[1]吕卫东, 程杰锋, 唐广波. 控制冷却技术的发展及其在热轧钢管过程的应用[J]. 上海金属, 2015, 37(2): 45-48. Lü Weidong, Cheng Jiefeng, Tang Guangbo. Development of controlled cooling technology and its application for hot rolled steel pipe[J]. Shanghai Metals, 2015, 37(2): 45-48. [2]王国栋. 控轧控冷技术的发展及在钢管轧制中应用的设想[J]. 钢管, 2011, 40(2): 1-8. Wang Guodong. Development of TMCP and envisaged application to steel tube rolling[J]. Steel Pipe, 2011, 40(2): 1-8. [3]殷光虹. 钢管在线加速冷却技术开发[J]. 宝钢技术, 2006(3): 1-4, 38. Yin Guanghong. Development of online accelerated-cooling process for seamless pipes[J]. Baosteel Technology, 2006(3): 1-4, 38. [4]钟锡弟, 庄 刚, 陈洪琪, 等. 无缝钢管在线控冷装置的开发与减量化生产实践[C]//2008年全国轧钢生产技术会议. 2008: 439-445. Zhong Xidi, Zhuang Gang, Chen Hongqi, et al. Exploitation of controlled cooling online and production practice of reduction processing[C]// 2008 National Rolling Production Technology Conference. 2008: 439-445. [5]彭龙洲, 陈利明, 杜新立, 等. 简析控轧控冷技术在无缝钢管生产中的应用[J]. 钢管, 2013, 42(4): 7-10. Peng Longzhou, Chen Liming, Du Xinli, et al. A brief analysis on application of TMCP to seamless steel tube production[J]. Steel Pipe, 2013, 42(4): 7-10. [6]王晓东, 包喜荣, 郭 锋, 等. P110钢级石油套管再结晶型控制轧制模拟研究[J]. 热加工工艺, 2014, 43(3): 47-49. Wang Xiaodong, Bao Xirong, Guo Feng, et al. Simulated research on recrystallization controlled rolling of P110 oil casing[J]. Hot Working Technology, 2014, 43(3): 47-49. [7]王晓东, 郭 锋, 包喜荣, 等. 钢管轧制热机械控制工艺的应用与研究[J]. 热加工工艺, 2016, 45(15): 20-24. Wang Xiaodong, Guo Feng, Bao Xirong, et al. Application and research of thermo-mechanical control process for steel tube rolling[J]. Hot Working Technology, 2016, 45(15): 20-24. [8]Timken Company. Controlled thermo-mechanical processing of tubes and pipes for enhanced manufacturing and performance[R]. 2005. [9]Jin D, Dominik E D, Kolarik II R V, et al. Modeling of controlled thermo-mechanical processing of tubes for enhanced manufacturing and performance[J]. Acta Metallurgica Sinica, 2000, 13(2): 832-842. [10]王有铭, 李曼云, 韦 光. 钢材的控制轧制和控制冷却[M]. 北京: 冶金工业出版, 2009. [11]热轧无缝钢管在线组织性能调控关键技术、装备开发及应用[J]. 中国冶金, 2022, 32(1): 124. [12]Anelli E, Cumino G, Gonalez C. Metallurgical design of accelerated-cooling process for seamless pipe production[C]//Proceedings from Materials Solutions, 97 on Accelerated Cooling/Direct Quenching of Steels, Indiana. 1997: 15-18. [13]李振垒, 陈 冬, 袁 国, 等. 热轧无缝钢管在线冷却控制系统研究[C]//第十一届中国钢铁年会, 北京. 2017: 1085-1089. Li Zhenlei, Chen Dong, Yuan Guo, et al. On-line cooling control system for hot seamless tube [C]//The 11th China Iron and Steel Annual Meeting, Beijing. 2017: 1085-1089. [14]王晓东, 郭 锋, 王宝峰, 等. 钢管控制冷却物理模拟平台的建立及传热边界条件的确定[J]. 机械工程学报, 2018, 54(24): 69-76. Wang Xiaodong, Guo Feng, Wang Baofeng, et al. Establishment of a physical simulation platform for controlled cooling of steel tubes and determination of heat transfer boundary conditions[J]. Journal of Mechanical Engineering, 2018, 54(24): 69-76. [15]张志勇. 热轧超快冷却技术的分析及应用[J]. 电气时代, 2013(4): 94-95. [16]孙明军, 段争涛. 超快冷却技术及在梅钢热轧的应用[J]. 上海金属, 2015, 37(4): 65-69. Sun Mingjun, Duan Zhengtao. Ultrafast cooling technology and application in Meigang hot strip mill[J]. Shanghai Metals, 2015, 37(4): 65-69. [17]Kundu S, Mukhopadhyay A, Chatterjee S, et al. Modelling of microstructure and heat transfer during controlled cooling of low carbon wire rod[J]. Transactions of the Iron and Steel Institute of Japan, 2007, 44(7): 1217-1223. [18]张利伟. 热轧超快冷却技术的分析及应用[J]. 科技创新导报, 2017, 14(14): 145, 147. [19]彭良贵, 刘相华, 王国栋. 超快冷却技术的发展[J]. 轧钢, 2004, 21(1): 1-3. Peng Lianggui, Liu Xianghua, Wang Guodong. Development of ultra fast cooling technology[J]. Steel Rolling, 2004, 21(1): 1-3. [20]汤雪娇, 包喜荣, 王晓东, 等. 基于TMCP的油井管用30MnNbRE钢形变热处理工艺[J]. 金属热处理, 2024, 49(7): 212-219. Tang Xuejiao, Bao Xirong, Wang Xiaodong, et al. Deformation heat treatment technology of 30MnNdRE steel for oil well pipe based on TMCP[J]. Heat Treatment of Metals, 2024, 49(7): 212-219. [21]宋 操, 王晓东, 包喜荣, 等. Ce对30MnNbRE钢淬火回火微观组织和力学性能的影响[J]. 金属热处理, 2023, 48(9): 143-149. Song Cao, Wang Xiaodong, Bao Xirong, et al. Effect of Ce microstructure and mechanical properties of 30MnNdRE steel after quenching and tempering[J]. Heat Treatment of Metals, 2023, 48(9): 143-149. [22]邱克强, 张 令, 孙治国, 等. 典型环形铸件凝固过程的界面换热系数分析[J]. 沈阳工业大学学报, 2021, 43(2): 156-162. Qiu Keqiang, Zhang Ling, Sun Zhiguo, et al. Analysis of interfacial heat transfer coefficient of typical annular casting during solidification process[J]. Journal of Shenyang University of Technology, 2021, 43(2): 156-162. [23]刘 妮, 李丽荣, 钟泽民. 微结构表面喷雾冷却性能试验研究[J]. 机械工程学报, 2017, 53(6): 158-165. Liu Ni, Li Lirong, Zhong Zemin. Heat transfer characteristics of spray cooling on microstructured surface[J]. Journal of Mechanical Engineering, 2017, 53(6): 158-165. [24]李辉平, 赵国群, 牛山廷, 等. 基于有限元和最优化方法的淬火冷却过程反传热分析[J]. 金属学报, 2005(2): 167-172. Li Huiping, Zhao Guoqun, Niu Shanting, et al. Inverse heat conduction analysis of quenching process based on finite element and optimization method[J]. Acta Metallurgica Sinica, 2005(2): 167-172. [25]韩会全, 胡建平, 王 强. 钢管冷却喷淋水量对换热系数的影响[J]. 钢铁, 2014, 49(3): 55-58, 62. Han Huiquan, Hu Jianping, Wang Qiang. Effect of water flux on heat transfer coefficient for steel pipe cooling[J]. Iron and Steel, 2014, 49(3): 55-58, 62. [26]赵 晶, 李 勇, 方建飞, 等. 不同温度水液淬火介质冷却特性的变化规律[J]. 热加工工艺, 2012, 41(20): 182-183, 188. Zhao Jing, Li Yong, Fang Jianfei, et al. Change laws of cooling characteristics of different temperature water[J]. Hot Working Technology, 2012, 41(20): 182-183, 188. [27]Issa R J, Yao S C. A numerical model for the mist dynamics and heat transfer at various ambient pressures[J]. Journal of Fluids Engineering, 2005, 127(4): 631-639. [28]冯莹莹, 骆宗安, 王立鹏, 等. 钢管超快冷过程数学模型的研究与开发[J]. 哈尔滨工程大学学报, 2015, 36(2): 252-256. Feng Yingying, Luo Zongan, Wang Lipeng, et al. Development of mathematical model for ultra-fast cooling process of a steel pipe[J]. Journal of Harbin Engineering University, 2015, 36(2): 252-256. [29]苏祯祺, 徐旋旋, 朱文凯, 等. 20#钢钢管冷拔脆性开裂原因分析[J]. 现代冶金, 2018, 46(3): 4-6. [30]邹文栋, 黄长辉, 欧阳小琴, 等. 合金韧窝断口微观形貌的扫描白光干涉三维检测重构及Motif表征[J]. 机械工程学报, 2011, 47(10): 8-13. Zou Wendong, Huang Changhui, Ouyang Xiaoqin, et al. Scanning white-light interferometric measurement 3D reconstruction and Motif evaluation of alloy dimple fracture microtopography[J]. Journal of Mechanical Engineering, 2011, 47(10): 8-13. |