[1]Aghajani A, Somsen C, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel[J]. Acta Materialia, 2009, 57(17): 5093-5106. [2]Prat O, Garcia J, Rojas D, et al. The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels[J]. Intermetallics, 2013, 32: 362-372. [3]Han H G, Shen J J, Xie J X. Author correction: Effects of precipitates evolution on low stress creep properties in P92 heat-resistant steel[J]. Scientific Reports, 2019, 9(1): 9567. [4]Jia C, Liu Y, Liu C, et al. Precipitates evolution during tempering of 9CrMoCoB (CB2) ferritic heat-resistant steel[J]. Materials Characterization, 2019, 152: 12-20. [5]Grange R A, Garvey T M. Factors affecting the hardenability of boron-treated steels[J]. Transactions of American Society Metals, 1946, 37: 136-191. [6]Hong S, Lee J, Park K S, et al. Effects of boron addition on tensile and Charpy impact properties in high-phosphorous steels[J]. Materials Science and Engineering A, 2014, 589: 165-173. [7]Rodriguez-Galeano K F, Rodriguez-Baracaldo R, Mestra-Rodriguez A, et al. Influence of boron content on the fracture toughness and fatigue crack propagation kinetics of bainitic steels[J]. Theoretical and Applied Fracture Mechanics, 2016, 86: 351-360. [8]Gharsallah H I, Makhlouf T, Saurina J, et al. Effect of boron addition on structural and magnetic properties of nanostructured Fe75Al25 alloy prepared by high energy ball milling[J]. Materials Letters, 2016, 181: 21-24. [9]Gomez-Vargas O A, Solis-Romero J, Figueroa-Lopez U, et al. Boro-nitriding coating on pure iron by powder-pack boriding and nitriding processes[J]. Materials Letters, 2016, 176: 261-264. [10]Ezatpour H R, Torabi-Parizi M, Ebrahimi G R, et al. Effect of micro-alloy elements on dynamic recrystallization behavior of a high-manganese steel[J]. Steel Research International, 2018, 89(7): 1700559. [11]Abe F, Tabuchi M, Tsukamoto S. Mechanisms for boron effect on microstructure and creep strength of ferritic power plant steels[J]. Energy Materials, 2009, 4(4): 166-174. [12]Abe F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 ℃ and above[J]. Engineering, 2015, 1(2): 211-224. [13]王 斌, 梁 军, 荆洪阳, 等. 时效温度对S31042奥氏体耐热钢碳化物的影响[J]. 热加工工艺, 2016, 45(18): 195-200. Wang Bin, Liang Jun, Jin Hongyang, et al. Effect of aging temperature on precipitated phase in S31042 austenite heat resistant steel[J]. Hot Working Technology, 2016, 45(18): 195-200. [14]Taneike M, Sawada K, Abe F. Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment[J]. Metallurgical and Materials Transactions A, 2004, 35(4): 1255-1262. [15]聂 铭, 张 健, 黄 丰, 等. T/P92耐热钢研究进展[J]. 金属热处理, 2013, 38(11): 40-44. Nie Ming, Zhang Jian, Huang Feng, et al. Research progress of T/P92 heat-resistant steels[J]. Heat Treatment of Metals, 2013, 38(11): 40-44. [16]Isik M I, Kostka A, Eggeler G. On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels[J]. Acta Materialia, 2014, 81: 230-240. [17]Háttestrand M, Andrén H O. Boron distribution in 9-12% chromium steels[J]. Materials Science and Engineering A, 1999, 270: 33-37. |