[1]Guo W G, Nemat Nasser S. Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures[J]. Mechanics of Materials, 2006, 38(11): 1090-1103. [2]姜 勇, 李 洋, 陈野风, 等. 奥氏体不锈钢低温表面渗碳技术的研究进展[J]. 机械工程材料, 2018, 42(10): 1-7. Jiang Yong, Li Yang, Chen Yefeng, et al. Research progress on low temperature surface carburization technique of austenite stainless steel[J]. Materials for Mechanical Engineering, 2018, 42(10): 1-7. [3]高 鹏, 贺 蒙, 蔡葆昉, 等. 海洋工程紧固件用0Cr20Mn18N0.8高氮奥氏体不锈钢的性能[J]. 机械工程材料, 2017, 41(8): 70-74. Gao Peng, He Meng, Cai Baofang, et al. Property of 0Cr20Mn18N0.8 high nitrogen austenite stainless steel for marine engineering fasteners[J]. Materials for Mechanical Engineering, 2017, 41(8): 70-74. [4]徐桂芳, 严 羽, 徐文慧, 等. 03Cr16Mn14Mo2N奥氏体不锈钢的热疲劳行为[J]. 机械工程材料, 2016, 40(12): 99-102. Xu Guifang, Yan Yu, Xu Wenhui, et al. Thermal fatigue behavior of austenitic stainless steel 03Cr16Mn14Mo2N[J]. Materials for Mechanical Engineering, 2016, 40(12): 99-102. [5]马 明, 丁 桦, 唐正友, 等. 2205 双相不锈钢中σ相的析出行为[J]. 东北大学学报(自然科学版), 2014, 35(4): 504-507. Ma Ming, Ding Hua, Tang Zhengyou, et al. Precipitation behavior of σ phase in duplex stainless steel 2205[J]. Journal of Northeastern University (Natural Science), 2014, 35(4): 504-507. [6]李兵兵, 陈海涛, 郎宇平, 等. 00Cr22Ni13Mn5Mo2N奥氏体不锈钢的热轧工艺[J]. 金属热处理, 2020, 45(6): 81-86. Li Bingbing, Chen Haitao, Lang Yuping, et al. Hot rolling process of 00Cr22Ni13Mn5Mo2N austenitic stainless steel[J]. Heat Treatment of Metals, 2020, 45(6): 81-86. [7]Hsieh Chih-Chun, Wu Weite. Overview of intermetallic sigma (σ) phase precipitation in stainless steels[J]. ISRN Metallurgy, 2012(1): 361-381. [8]Lescur A, Stergar E, Lim J, et al. Microstructural investigation and identification of intermetallic σ-phase in solution annealed 316L-type austenitic stainless steel[J]. Materials Characterization, 2021, 182: 111524 [9]朱 玮, 吴建祥, 沈圣华. 奥氏体不锈钢中铁素体含量对低温冲击性能和焊接性能的影响[J]. 冶金与材料, 2020, 40(2): 63-64. [10]梁晓军, 焦四海. 不锈钢中δ铁素体与奥氏体组织转变模拟[J]. 材料热处理学报, 2007, 28(4): 144-148. Liang Xiaojun, Jiao Sihai. Simulations of transformation from δ-ferrite to austenite in stainless steel[J]. Transactions of Materials and Heat Treatment, 2007, 28(4): 144-148. [11]杨晓雅, 何 岸, 谢甘霖, 等. 核电用奥氏体不锈钢的动态再结晶行为[J]. 工程科学学报, 2015, 37(11): 1447-1455. Yang Xiaoya, He An, Xie Ganlin, et al. Dynamic recrystallization behavior of an austenitic stainless steel for nuclear power plants[J]. Chinese Journal of Engineer, 2015, 37(11): 1447-1455. [12]Singh D, Yoshinaka F, Takamori S, et al. Breaking the strength-ductility trade-off in austenitic stainless steel at cryogenic temperatures: Mechanistic insights[J]. Journal of Materials Research and Technology, 2024, 33: 600-611. [13]Hua J, Tatsuki W, Chihiro W, et al. Deformation behavior of heterogeneous nanostructured austenitic stainless steel at cryogenic temperature[J]. Materials Science and Engineering A, 2022, 840: 142871. [14]陈海涛, 罗毅军. 氮对316LN奥氏体不锈钢力学性能和耐蚀性的影响[J]. 特殊钢, 2013, 34(6): 56-58. Chen Haitao, Luo Yijun. Effect of nitrogen on mechanical properties and corrosion resistance of austenite stainless steel 316LN[J]. Special Steel, 2013, 34(6): 56-58. [15]袁志钟, 戴起勋, 程晓农, 等. 氮在奥氏体不锈钢中的作用[J]. 江苏大学学报: 自然科学版, 2002, 23(3): 72-75. Yuan Zhizhong, Dai Qixun, Cheng Xiaonong, et al. Effects of nitrogen in austenitic stainless steels[J]. Journal of Jiangsu University (Natural Science Edition), 2002, 23(3): 72-75. |