[1]武永福, 刘世权, 翟 浩, 等. 热处理工艺对42CrMo钢微观组织和耐磨性能的影响[J]. 工程机械, 2023, 54(10): 135-139. Wu Yongfu, Liu Shiquan, Zhai Hao, et al. Effect of heat treatment process on microstructure and wear resistance of 42CrMo steel[J]. Construction Machinery and Equipment, 2023, 54(10): 135-139. [2]袁志钟, 王梦飞, 段旭斌, 等. 热处理对42CrMo钢截齿微观组织与力学性能的影响[J]. 金属热处理, 2023, 48(6): 1-8. Yuan Zhizhong, Wang Mengfei, Duan Xubin, et al. Effect of heat treatment on microstructure and mechanical properties of 42CrMo steel picks[J]. Heat Treatment of Metals, 2023, 48(6): 1-8. [3]赵丽娟, 田 震, 郭辰光. 矿用截齿失效形式及对策[J]. 金属热处理, 2015, 40(6): 194-198. Zhao Lijuan, Tian Zhen, Guo Chenguang. Failure modes and countermeasures of a mining pick[J]. Heat Treatment of Metals, 2015, 40(6): 194-198. [4]张 强, 聂国强. 重型掘进机截齿失效机理与耐磨性改进研究[J]. 热加工工艺, 2013, 42(14): 23-26. Zhang Qiang, Nie Guoqiang. Experimental research on failure mechanism and wear resistance improvement of heavy cutting teeth[J]. Hot Working Technology, 2013, 42(14): 23-26. [5]李子岩, 许鸿翔, 陈业生, 等. 42CrMo 钢低速轴止推环调质开裂失效分析[J]. 金属热处理, 2023, 48(9): 283-287. Li Ziyan, Xu Hongxiang, Chen Yesheng, et al. Failure analysis on quenching and tempering cracking of 42CrMo steel low-speed shaft thrust ring[J]. Heat Treatment of Metals, 2023, 48(9): 283-287. [6]安峻岐, 刘新继, 何 鹏. 渗碳与碳氮共渗催渗技术的发展与现状[J]. 金属热处理, 2007, 32(5): 78-82. An Junqi, Liu Xinji, He Peng. Development and status of accelerating carburizing and carbonitriding technology[J]. Heat Treatment of Metals, 2007, 32(5): 78-82. [7]时 运, 杜晓东, 庄鹏程, 等. 等离子熔覆技术的研究现状及展望[J]. 表面技术, 2019, 48(12): 23-33. Shi Yun, Du Xiaodong, Zhuang Pengcheng, et al. Research and development trend of plasma cladding technology[J]. Surface Technology, 2019, 48(12): 23-33. [8]孙方红, 马 壮, 董世知. 矿用截齿表面强化技术[J]. 金属热处理, 2011, 36(11): 99-102. Sun Fanghong, Ma Zhuang, Dong Shizhi. Surface strengthening of mining pick[J]. Heat Treatment of Metals, 2011, 36(11): 99-102. [9]Aghasibeig M, Fredriksson H. Laser cladding of a featureless iron-based alloy[J]. Surface and Coatings Technology, 2012, 209(8): 32-37. [10]Paydas H, Mertens A, Carrus R, et al. Laser cladding as repair technology for Ti-6Al-4V alloy: Influence of building strategy on microstructure and hardness[J]. Materials and Design, 2015, 85: 497-510. [11]王燕琳, 何 源, 洪 鑫, 等. 高速钢材料表面激光熔覆Ni基WC条纹的减摩机理[J]. 激光与光电子学进展, 2018, 55(2): 284-288. Wang Yanlin, He Yuan, Hong Xin, et al. Friction reducing mechanism of high speed steel surface with Ni-based WC stripes by laser cladding[J]. Laser and Optoelectronics Progress, 2018, 55(2): 284-288. [12]曹怀华, 陈传忠, 孙 毅, 等. W18Cr4V钢表面激光熔覆 TiC-Co 金属陶瓷[J]. 应用激光, 1999, 19(3): 103-106. Cao Huaihua, Chen Chuanzhong, Sun Yi, et al. Laser cladding TiC-Co metal ceramic on W18Cr4V steel[J]. Applied Laser, 1999, 19(3): 103-106. [13]Cheng P G, He Z Y. Preparing of NiAl and Ni3Al intermetallic composite coatings by laser cladding in situ synthesis[J]. Advanced Materials Research, 2011, 239-242: 636-641. [14]Hong K M, Shin Y C. Analysis of microstructure and mechanical properties change in laser welding of Ti-6Al-4V with a multiphysics prediction model[J]. Journal of Materials Processing Technology, 2016, 237: 420-429. [15]Gao Z, Ren C, Li J, et al. Effect of mechanical vibration on microstructure and properties of laser cladding WC-reinforced nickel-based alloy coatings[J]. Coatings, 2023, 13(5): 840-853. [16]刘洪喜, 陶喜德, 张晓伟, 等. 机械振动辅助激光熔覆 Fe-Cr-Si-B-C 涂层的显微组织及界面分布形态[J]. 光学精密工程, 2015, 23(8): 2192-2202. Liu Hongxi, Tao Xide, Zhang Xiaowei, et al. Microstructure and interface distribution of Fe-Cr-Si-B-C laser cladding alloy coatings assisted by mechanical vibration[J]. Optics and Precision Engineering, 2015, 23(8): 2192-2202. [17]陶喜德, 刘洪喜, 张晓伟, 等. 机械振动作用下铁基涂层熔覆角的模型构建及其变化规律研究[J]. 中国激光, 2015, 42(3): 141-147. Tao Xide, Liu Hongxi, Zhang Xiaowei, et al. Cladding angle model and variation law of Fe-based coating fabricated by mechanical vibration assisted laser cladding[J]. Chinese Journal of Lasers, 2015, 42(3): 141-147. [18]王新林, 石世宏, 郑启光. 激光熔覆层凝固特征与凝固组织控制研究[J]. 应用激光, 2001, 21(3): 164-166. Wang Xinlin, Shi Shihong, Zheng Qiguang. Study on solidification feature and the solidification microstructure control of laser cladding layer[J]. Applied Laser, 2001, 21(3): 164-166. [19]马海波, 张维平. 钛合金表面激光熔覆钴基复合涂层的组织和性能[J]. 稀有金属材料与工程, 2010, 39(12): 2189-2192. Ma Haibo, Zhang Weiping. Microstructure and properties of Co-based alloy laser clad layer on titanium alloy surface[J]. Rare Metal Materials and Engineering, 2010, 39(12): 2189-2192. [20]高中堂, 任聪聪, 杜立飞, 等. 机械振动对Ni-WC激光熔覆层组织和性能的影响[J]. 铸造技术, 2022, 43(8): 641-646. Gao Zhongtang, Ren Congcong, Du Lifei, et al. Effect of mechanical vibration on microstructure and properties of Ni-WC laser cladding layer[J]. Foundry Technology, 2022, 43(8): 641-646. [21]石玉峰, 许庆彦, 柳百成. 对流作用下枝晶形貌演化的数值模拟和实验研究[J]. 物理学报, 2011, 60(12): 381-391. Shi Yufeng, Xu Qingyan, Liu Baicheng. Simulation and experimental research of melt convection on dendrite morphology evolution[J]. Acta Physica Sinica, 2011, 60(12): 381-391. |