[1]Chen M S, Yuan W Q, Lin Y C. et al. Modeling and simulation of dynamic recrystallization behavior for 42CrMo steel by an extended cellular automaton method[J]. Vacuum, 2017, 146: 142-151. [2]Jiang B, Zhou L, Wen X, et al. Heat treatment properties of 42CrMo steel for bearing ring of varisized shield tunneling machine[J]. Acta Metallurgica Sinica(English Letters), 2014, 27(3): 383-388. [3]李鸿娟, 向成功, 吴 琼, 等. 淬火与回火工艺对42CrMo钢显微组织和奥氏体晶粒长大规律的影响[J]. 金属热处理, 2023, 48(1): 181-185. Li Hongjuan, Xiang Chenggong, Wu Qiong, et al. Effect of quenching and tempering process on microstructure and austenite grain growth of 42CrMo steel[J]. Heat Treatment of Metals, 2023, 48(1): 181-185. [4]Zhang J, Liu Z, Sun J, et al. Microstructure and mechanical property of electropulsing tempered ultrafine grained 42CrMo steel[J]. Materials Science and Engineering A, 2020, 782: 139213. [5]Quan G, Tong Y, Luo G, et al. A characterization for the flow behavior of 42CrMo steel[J]. Computational Materials Science, 2010, 50(1): 167-171. [6]Lu Y, Zhu Z, Li D, et al. Constitutive model of 42CrMo steel under a wide range of stain rates based on crystal plasticity theory[J]. Materials Science and Engineering A, 2017, 679: 215-222. [7]苑静之, 时乐智, 许文花, 等. 42CrMo钢风电主轴开裂失效的组织缺陷分析[J]. 金属热处理, 2020, 45(7): 206-209. Yuan Jingzhi, Shi Yuezhi, Xu Wenhua, et al. Structure-defect analysis of crack failure in 42CrMo wind power spindle[J]. Heat Treatment of Metals, 2020, 45(7): 206-209. [8]邢嘉倪, 蔡 欣, 郑雷刚, 等. 淬火及回火温度对新型中碳合金钢42CrMo4M组织性能的影响[J]. 材料热处理学报, 2022, 43(5): 124-133. Xing Jiani, Cai Xin, Zheng Leigang, et al. Effect of quenching and tempering temperature on microstructure and mechanical properties of a new medium carbon alloy steel 42CrMo4M[J]. Transactions of Materials and Heat Treatment, 2022, 43(5): 124-133. [9]居 龙, 冯 超, 赵劲彪, 等. 42CrMo高强度螺栓在海洋大气环境中的应力腐蚀开裂风险评估[J]. 腐蚀与防护, 2019, 40(9): 644-649. Ju Long, Feng Chao, Zhao Jinbiao, et al. Risk assessment of stress corrosion cracking of 42CrMo high strength steel botts in seacoast environment[J]. Corrosion and Protection, 2019, 40(9): 644-649. [10]吕超然, 史 超, 蒋伟斌, 等. 回火温度对42CrMo钢组织和力学性能的影响[J]. 金属热处理, 2021, 46(1): 32-37. Lü Chaoran, Shi Chao, Jiang Weibin, et al. Effect of tempering temperature on microstructure and mechanical properties of 42CrMo steel[J]. Heat Treatment of Metals, 2021, 46(1): 32-37. [11]Wang C, Yu L, Ding R, et al. Microstructure and mechanical properties of a novel medium Mn steel with Cr and Mo microalloying[J]. Materials Science and Engineering A, 2021, 825: 141926. [12]蒋 波, 霍朝霞, 周乐育, 等. 奥氏体变形和Mn对42CrMo钢连续冷却相变组织的影响[J]. 材料热处理学报, 2014, 35(8): 119-124. Jing Bo, Huo Zhaoxia, Zhou Leyu, et al. Effect of austenite deformation and manganese content on microstructure of continuous cooling transformation of 42CrMo steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(8): 119-124. [13]孔昌昌, 秦凤明, 张晓峰, 等. 含Mo元素CL60钢CCT曲线的测定及分析[J]. 材料热处理学报, 2019, 40(8): 138-144. Kong Changchang, Qin Fengming, Zhang Xiaofeng, et al. Detection and analysis of CCT curve of CL60 steel with Mo element[J]. Transactions of Materials and Heat Treatment, 2019, 40(8): 138-144. [14]桂晓露, 刘 蓉, 高古辉, 等. Cr元素对贝氏体钢连续转变规律的影响[J]. 材料热处理学报, 2016, 37(10): 154-158. Gui Xiaolu, Liu Rong, Gao Guhui, et al. Effect of Cr on continuous cooling transformation characteristic of bainitic steels[J]. Transactions of Materials and Heat Treatment, 2016, 37(10): 154-158. [15]彭 聪, 陈 霞, 张 益. Mo对低碳贝氏体钢相变动力学及组织性能影响研究[J]. 热加工工艺, 2017, 46(12): 95-98. Peng Cong, Chen Xia, Zhang Yi. Effects of Mo on phase transformation kinetics and microstructure and mechanical properties of low carbon bainitic steel[J]. Hot Working Technology, 2017, 46(12): 95-98. [16]谭谆礼, 白秉哲, 方鸿生. Mo在新型空冷低碳Mn-Si-Cr系贝氏体钢中的作用[J]. 金属热处理, 2007, 32(9): 48-51. Tan Zhunli, Bai Bingzhe, Fang Hongsheng. Influence of Mo on microstructure and properties of novel air-cooled low carbon Mn-Si-Cr bainitic steels[J]. Heat Treatment of Metals, 2007, 32(9): 48-51. [17]Kong J, Xie C. Effect of molybdenum on continuous cooling bainite transformation of low-carbon microalloyed steel[J]. Materials and Design, 2006, 27(10): 1169-1173. [18]De-Castro D, Eres-Castellanos A, Vivas J, et al. Morphological and crystallographic features of granular and lath-like bainite in a low carbon microalloyed steel[J]. Materials Characterization, 2022, 184: 111703. [19]Li Z J, Chen Y B, Yuan H R, et al. Microstructure and properties of low alloy CrMo steel processed with varied isothermal temperatures[J]. Materials Today Communications, 2023, 35: 106158. [20]刘宗昌, 王海燕, 任慧平, 等. 贝氏体碳化物形成机理[J]. 热处理技术与装备, 2007, 28(4): 19-23. Liu Zongchang, Wang Haiyan, Ren Huiping, et al. Formation mechanism of bainite carbide[J]. Heat Treatment Technology and Equipment, 2007, 28(4): 19-23. [21]乔 斌. 粒状贝氏体的形成[J]. 淮海工学院学报(自然科学版), 1998, 7(2): 13-16. Qiao Bin. Theprinciples of granular bainite[J]. Journal of Huaihai Institute of Technology: Natural Sciences Edition, 1998, 7(2): 13-16. [22]郭富玉, 闵 娜, 袁俊丰, 等. 扩散退火对DIEVAR钢枝晶偏析和元素分布的影响[J]. 材料热处理学报, 2021, 42(7): 79-88. Guo Fuyu, Min Na, Yuan Junfeng, et al. Effect of diffusion annealing on dendrite segregation and element distribution of DIEVAR steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(7): 79-88. [23]Bach P W, Beyer J, Verbraak C A. Atom probe analysis of bainitic phase boundaries in a low alloyed Cr Mo steel[J]. Scripta Metallurgica, 1980, 14(2): 205-210. |