[1]邓军伟, 戴学忠, 蔡婵婵, 等. 48MnV 钢曲轴裂纹分析[J]. 金属热处理, 2017, 42(5): 205-208. Deng Junwei, Dai Xuezhong, Cai Chanchan, et al. Analysis on 48MnV steel crankshaft crack[J]. Heat Treatment of Metals, 2017, 42(5): 205-208. [2]彭瑜华, 张 敏, 王伟晓, 等. 滚轮磨削裂纹的产生机理及改进措施[J]. 金属热处理, 2014, 39(4): 145-147. Peng Yuhua, Zhang Min, Wang Weixiao, et al. Formation cause and improving measure of grinding crack of roller[J]. Heat Treatment of Metals, 2014, 39(4): 145-147. [3]孙胜伟, 宋亚虎, 刘铁山, 等. 20CrMnMo钢渗碳齿轮磨削裂纹成因分析[J]. 理化检验(物理分册), 2016, 52(2): 117-120. Sun Shengwei, Song Yahu, Liu Tieshan, et al. Causes analysis on grinding cracks of 20CrMnMo steel carburized gears[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2016, 52(2): 117-120. [4]陆建修, 邸可新. 渗碳淬火齿轮磨削裂纹的失效分析[J]. 热处理, 2016, 31(4): 56-60. Lu Jianxiu, Di Kexin. Analysis on grinding cracks at surface of carburized and hardened gear[J]. Heat Treatment, 2016, 31(4): 56-60. [5]邹龙江, 周 全, 高路斯, 等. GCr15钢轴承外套圈磨削开裂失效分析[J]. 金属热处理, 2013, 38(9): 99-101. Zou Longjiang, Zhou Quan, Gao Lusi, et al. Failure analysis on grinding cracking of GCr15 steel bearing outer ring[J]. Heat Treatment of Metals, 2013, 38(9): 99-101. [6]石如星, 林乙丑, 张 沛, 等. 旋回破碎机4Cr13 钢主轴套激光淬火后的磨削裂纹分析[J]. 金属热处理, 2022, 47(5): 257-261. Shi Ruxing, Lin Yichou, Zhang Pei, et al. Analysis of grinding cracks on 4Cr13 steel spindle sleeve for gyratory crusher after laser quenching[J]. Heat Treatment of Metals, 2022, 47(5): 257-261. [7]郎庆斌, 张航宇, 郑三妹, 等. 渗碳淬火齿轮齿面裂纹的检测和分析[J]. 热加工工艺, 2017, 46(14): 253-256. Lang Qingbin, Zhang Hangyu, Zheng Sanmei, et al. Detection and analysis of tooth surface crack of carburized and quenched gears[J]. Hot Working Technology, 2017, 46(14): 253-256. [8]何玉怀, 姜 涛, 刘新灵, 等. 失效分析[M]. 北京: 国防工业出版社, 2017: 144-149. [9]张朋鑫. 磨削裂纹产生的原因及预防措施[J]. 金属加工(冷加工), 2022(1): 42-46. Zhang Pengxin. Causes of grinding cracks and preventive measures[J]. MW Metal Cutting, 2022(1): 42-46. [10]黄新春, 张定华, 姚 锋, 等. 超高强度钢 AerMet100磨削烧伤研究[J]. 机械工程学报, 2015, 51(9): 184-190. Huang Xinchun, Zhang Dinghua, Yao Feng, et al. Research on the grinding burn of the ultrahigh strength steel AerMet100[J]. Journal of Mechanical Engineering, 2015, 51(9): 184-190. [11]Li X F, Ma X F, Zhang J. Review of hydrogen embrittlement in metals: Hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention[J]. Acta Metallurgica Sinica, 2020, 33(6): 1-11. [12]Yoshino K, Mcmahon C J. The cooperative relation between temper embrittlement and hydrogen embrittlement in a high strength steel[J]. Metallurgical and Materials Transaction B, 1974, 5(2): 363-370. |