[1]Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities[J]. Journal of Nuclear Materials, 2008, 383(1/2): 189-195. [2]Bhattacharyya D, Yamamoto T, Wells P, et al. Microstructural changes and their effect on hardening in neutron irradiated Fe-Cr alloys[J]. Journal of Nuclear Materials, 2019, 519: 274-286. [3]Klueh R L, Nelson A T. Ferritic/martensitic steels for next-generation reactors[J]. Journal of Nuclear Materials, 2007, 371(1/3): 37-52. [4]Zhao M Z, Liu P P, Bai J W, et al. In-situ observation of the effect of the precipitate/matrix interface on the evolution of dislocation structures in CLAM steel during irradiation[J]. Fusion Engineering and Design, 2014, 89(11): 2759-2765. [5]Gelles D S. Microstructural examination of commercial ferritic alloys at 200 dpa[J]. Journal of Nuclear Materials, 1996, 233(1): 293-298. [6]Gan J, Was G S. Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with rotons: Comparison with neutron-irradiated microstructures[J]. Journal of Nuclear Materials, 2001, 297(2): 161-175. [7]Zinkle S J, Snead L L. Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations[J]. Scripta Materialia, 2017: 154-160. [8]Zhao D, Li S, Wang X, et al. Proton irradiation induced defects in T92 steels: An investigation by TEM and positron annihilation spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 442: 59-66. [9]Kern T, Staubli M, Scarlin B. The European efforts in material development for 650 ℃ USC power plants-COST522[J]. ISIJ International, 2002, 42(12): 1515-1519. [10]Abe F, Nakazawa S. Microstructural evolution and creep behaviour of bainitic, martensitic, and martensite-ferrite dual phase Cr-2W steels[J]. Materials Science and Technology, 2013, 8(12): 1063-1069. [11]Klueh R L. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors[J]. International Materials Reviews, 2005, 50(5): 287-310. [12]Viswanathan R, Bakker W. Materials for ultrasupercritical coal power plants-Boiler materials: Part 1[J]. Journal of Materials Engineering and Performance, 2001, 10(1): 81-95. [13]Viswanathan R, Bakker W. Materials for ultrasupercritical coal power plants-boiler materials: Part II[J]. Journal of Materials Engineering and Performance, 2001, 10(1): 96-101. [14]Zhou X L, Xu Z Q, Shen Y Z, et al. Identification of precipitate phases in an 11%Cr ferritic/martensitic steel after short-term creep[J]. ISIJ International, 2018, 58(8): 1467-1473. [15]季 波, 沈寅忠, 崔 凯. SAVE12钢蠕变前后的微观组织分析[J]. 材料热处理学报, 2014, 35(1): 34-39. Ji Bo, Shen Yinzhong, Cui Kai. Microstructure SAVE12 steel before and after creep[J]. Transactions of Materials and Heat Treatment, 2014, 35(1): 34-39. [16]Yamashita S, Yano Y, Tachi Y, et al. Effect of high dose/high temperature irradiation on the microstructure of heat resistant 11Cr ferritic/martensitic steels[J]. Journal of Nuclear Materials, 2009, 386: 135-139. [17]Shen Y Z, Fan Z J, Wang J Z. Fe ion irradiation effects on the precipitates of P92 steel after thermomechanical treatment[J]. Journal of Nuclear Materials, 2023, 581: 154374. [18]Venkataraman G, Mallik A. Thermomechanical treatment of a low carbon Cr·Ni·Mo steel[J]. Materials Science and Engineering, 1974, 16(1/2): 133-141. [19]Lu Z, Faulkner R G, Was G, et al. Irradiation-induced grain boundary chromium microchemistry in high alloy ferritic steels[J]. Scripta Materialia, 2008, 58(10): 878-881. [20]Jin S, Guo L, Yang Z, et al. Microstructural evolution of P92 ferritic/martensitic steel under argon ion irradiation[J]. Materials Characterization, 2011, 62(1): 136-142. |