[1]Chen Shangping, Rana Radhakanta, Haldar Arunansu, et al. Current state of Fe-Mn-Al-C low density steels[J]. Progress in Materials Science, 2017, 89: 345-391. [2]Chen P, Li X, Yi H. The κ-carbides in low-density Fe-Mn-Al-C steels: A review on their structure, precipitation and deformation mechanism[J]. Metals, 2020, 10(8): 1021. [3]章小峰, 李家星, 万亚雄, 等. 低密度钢中有序析出相的研究进展[J]. 材料导报, 2019, 33(23): 3979-3989. Zhang Xiaofeng, Li Jiaxing, Wan Yaxiong, et al. Research progress of ordered precipitates in low-density steels[J]. Materials Reports, 2019, 33(23): 3979-3989. [4]Seol J B, Raabe D, Choi P, et al. Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe-Mn-Al-C alloy studied by transmission electron microscopy and atom probe tomography[J]. Scripta Materialia, 2012, 68: 348-353. [5]Wang C S, Hwang C N, Chao C G, et al. Phase transitions in an Fe-9Al-30Mn-2.0C alloy[J]. Scripta Materialia, 2007, 57(9): 809-812. [6]Zhang J, Jiang Y, Zheng W, et al. Revisiting the formation mechanism of intragranular κ-carbide in austenite of a Fe-Mn-Al-Cr-C low-density steel[J]. Scripta Materialia, 2021, 199(3): 113836. [7]Jeong S, Park G, Kim B, et al. Precipitation behavior and its effect on mechanical properties in weld heat-affected zone in age hardened FeMnAlC lightweight steels[J]. Materials Science and Engineering, 2019, 742: 61-68. [8]Lehnhoff G R, Findley K O, De Cooman B C. The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel[J]. Scripta Materialia, 2014, 92: 19-22. [9]Han S Y, Shin S Y, Lee S, et al. Effect of carbon content on cracking phenomenon occurring during cold rolling of three light-weight steel plates[J]. Metallurgical and Materials Transactions A, 2011, 42(1): 138-146. [10]Ley N A, Young M L, Hornbuckle B C, et al. Toughness enhancing mechanisms in age hardened Fe-Mn-Al-C steels[J]. Materials Science and Engineering A, 2021, 820(5): 141518. [11]Kang J, Li Y J, Wang X H, et al. Design of a low density Fe-Mn-Al-C steel with high strength-high ductility combination involving TRIP effect and dynamic carbon partitioning[J]. Materials Science and Engineering, 2019, 742: 464-477. [12]Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel[J]. Materials Science and Engineering A, 2008, 496(1/2): 417-424. [13]Kimura Y, Handa K, Hayashi K, et al. Microstructure control and ductility improvement of the two-phase γ-Fe/κ-(Fe, Mn)3AlC alloys in the Fe-Mn-Al-C quaternary system[J]. Intermetallics, 2004, 12(6): 607-617. [14]孟静竹, 刘仁东, 郭金宇, 等. Fe-Mn-Al-C系轻质钢中含铝碳化物的析出规律[J]. 金属热处理, 2022, 47(8): 71-76. Meng Jingzhu, Liu Rendong, Guo Jinyu, et al. Precipitation law of carbide containing aluminum in Fe-Mn-Al-C lightweight steel[J]. Heat Treatment of Metals, 2022, 47(8): 71-76. [15]郑启泰. 四方晶系Patterson法多解的一般形式[J]. 物理学报, 1981, 30(7): 908-915. Zheng Qitai. The general types of multiple solution in Patterson method for tetragonal system[J]. Acta Physica Sinica, 1981, 30(7): 908-915. [16]Huang H, Gan D, Kao P W. Effect of alloying additions on the κ phase precipitation in austenitic Fe-Mn-Al-C alloys[J]. Scripta Metallurgica et Materialia, 1994, 30(4): 499-504. [17]Li M C, Chang H, Kao P W, et al. The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys[J]. Materials Chemistry and Physics, 1999, 59(1): 96-99. [18]Zuazo I, Hallstedt B, Lindahl B, et al. Low-density steels: Complex metallurgy for automotive applications[J]. JOM, 2014, 66(9): 1747-1758. [19]Sohn S S, Lee B J, Lee S, et al. Effects of aluminum content on cracking phenomenon occurring during cold rolling of three ferrite-based lightweight steel[J]. Acta Materialia, 2013, 61(15): 5626. [20]Seo Chang-Hyo, Kwon Ki Hyuk, Choi Kayoung, et al. Deformation behavior of ferrite-austenite duplex lightweight Fe-Mn-Al-C steel[J]. Scripta Materialia, 2012, 66(8): 519-522. [21]Springer H, Raabe D. Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels[J]. Acta Materialia, 2012, 60(12): 4950-5959. [22]Li Siyuan, Li Dazhao, Lu Haitao, et al. Effect of κ-carbides on deformation behavior of Fe-27Mn-10Al-1C low density steel[J]. Crystals, 2022, 12(7): 991. [23]Sutou Yuji, Kamiya Naohide, Umino Reiko, et al. High-strength Fe-20Mn-Al-C-based alloys with low density[J]. ISIJ International, 2010, 50(6): 893-899. [24]Song H, Kwon Y, Sohn S S, et al. Improvement of tensile properties in(austenite+ferrite+κ-carbide) triplex hot-rolled lightweight steels[J]. Materials Science and Engineering A, 2018, 730: 177-186. [25]Sohn S S, Lee B J, Lee S, et al. Effect of Mn addition on microstructural modification and cracking behavior of ferritic light-weight steels[J]. Metallurgical and Materials Transactions A, 2014, 45(12): 5469-5485. [26]杨富强. 汽车用Fe-Mn-Al系轻质高强钢制备工艺及变形机理研究[D]. 北京: 北京科技大学, 2015. Yang Fuqiang. Research on the preparation technology and deformation mechanism of automobile light-weight Fe-Mn-Al high strength steel[D]. Beijing: University of Science and Technology Beijing, 2015. [27]刘志伟, 王书勤, 罗凤亮. 固溶处理对汽车用Fe-Mn-Al-C高强低密度钢组织与力学性能的影响[J]. 热加工工艺, 2020, 49(18): 111-115. Liu Zhiwei, Wang Shuqin, Luo Fengliang. Effects of solution treatment on microstructure and mechanical properties of Fe-Mn-Al-C high strength and low density steel for automobile[J]. Hot Working Technology, 2020, 49(18): 111-115. [28]马 涛, 李慧蓉, 高建新, 等. 合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述[J]. 材料导报, 2020, 34(11): 11153-11161. Ma Tao, Li Huirong, Gao Jianxin, et al. Effect of alloying elements and aging treatment on the properties of kappa-carbide in Fe-Mn-Al-C low density steels: A review[J]. Materials Reports, 2020, 34(11): 11153-11161. [29]Chen S, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels[J]. Progress in Materials Science, 2017, 89: 345-391. [30]Kim H, Suh D W, Kim N J. Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties[J]. Science and Technology of Advanced Materials, 2013, 14(1): 014205. [31]刘少尊, 王春旭, 厉 勇, 等. 时效温度对固溶态Fe-Mn-Al-C低密度钢性能与析出相的影响[J]. 金属热处理, 2015, 40(11): 103-107. Liu Shaozun, Wang Chunxu, Li Yong, et al. Effect of aging temperature on properties and precipitation of Fe-Mn-Al-C low-density steel[J]. Heat Treatment of Metals, 2015, 40(11): 103-107. [32]Banis Alexandros, Gomez Andrea, Bliznuk Vitaliy, et al. Microstructure evolution and mechanical behavior of Fe-Mn-Al-C low-density steel upon aging[J]. Materials Science and Engineering A, 2023, 875: 145109. [33]王 萍, 郭爱民, 侯清宇, 等. 时效态Fe-Mn-Al-C钢的性能和变形机制[J]. 材料研究学报, 2021, 35(3): 184-192. Wang Ping, Guo Aimin, Hou Qingyu, et al. Properties and deformation mechanism of aged Fe-Mn-Al-C steel[J]. Chinese Journal of Materials Research, 2021, 35(3): 184-192. [34]付锡彬. 奥氏体低密度钢热变形及κ碳化物控制研究[D]. 马鞍山: 安徽工业大学, 2022. Fu Xibin. Study on hot deformation and κ carbide control of austenitic low density steel[D]. Maanshan: Anhui University of Technology, 2022. [35]Wu Z Q, Ding H, An X H, et al. Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content[J]. Materials Science and Engineering A, 2015, 639: 187-191. [36]Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0. 8C steel[J]. Scripta Materialia, 2010, 63(10): 1028-1031. [37]杨 壹, 杨浩坤, 何 强, 等. 时效热处理对Fe-Mn-Al-C轻质高锰钢拉伸和冲击性能的影响[J]. 材料研究与应用, 2023, 17(2): 303-309. Yang Yi, Yang Haokun, He Qiang, et al. The effect of aging treatment on the mechanical and impact properties of solid soluted Fe-Mn-Al-C lightweight high manganese steel[J]. Materials Research and Application, 2023, 17(2): 303-309. [38]张 琪, 沈逸平, 陈光辉, 等. 固溶温度对Fe-30Mn-8Al-0.8C低密度钢组织及力学性能的影响[J]. 钢铁, 2024, 59(2): 129-138. Zhang Qi, Shen Yiping, Chen Guanghui, et al. Effect of solid solution temperature on microstructures and mechanical properties of Fe-30Mn-8Al-0.8C low density steel[J]. Iron and Steel, 2024, 59(2): 129-138. [39]王英虎. Fe-12.6Mn-9Al-0.8C低密度铸钢组织性能及热处理工艺研究[D]. 天津: 河北工业大学, 2018. Wang Yinghu. Study on microstructure, mechanical properties and heat treatment of Fe-12.6Mn-9Al-0.8C low density cast steel[D]. Tianjin: Hebei University of Technology, 2018. [40]Lu W J, Zhang X F, Qin R S. κ-carbide hardening in a low-density high-Al high-Mn multiphase steel[J]. Materials Letters, 2015, 138: 96-99. [41]江志华, 金建军, 王晓震, 等. 一种1350 MPa级低密度高强度钢的组织性能[J]. 航空材料学报, 2018, 38(5): 67-73. Jiang Zhihua, Jin Jianjun, Wang Xiaozhen, et al. Microstructure and properties of a low-density steel with high strength of 1350 MPa[J]. Journal of Aeronautical Materials, 2018, 38(5): 67-73. [42]Zhao C, Song R, Zhang L, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7C low-density steel[J]. Materials and Design, 2016, 91: 348-360. [43]Choo W K, Kim J H, Yoon J C. Microstructural change in austenitic Fe-30.0wt%Mn-7.8wt%Al-1.3wt%C initiated by spinodal decomposition and its influence on mechanical properties[J]. Acta Materialia, 1997, 45(12): 4877-4885. [44]Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels[J]. Steel Research International, 2006, 77(9/10): 627-633. [45]Cheng W C. Phase transformations of an Fe-0.85C-17.9Mn-7.1Al austenitic steel after quenching and annealing[J]. JOM, 2014, 66(9): 1809-1820. [46]Jeong J, Lee C Y, Park I J, et al. Isothermal precipitation behavior of κ-carbide in the Fe-9Mn-6Al-0.15C lightweight steel with a multiphase microstructure[J]. Journal of Alloys and Compounds, 2013, 574: 299-304. [47]Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J]. Materials Science and Engineering A, 2004, 387: 158-162. [48]Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel[J]. Materials Science and Engineering A, 2008, 496(1/2): 417-424. [49]Song W, Ingendahl T, Bleck W. Control of strain hardening behavior in high-Mn austenitic steels[J]. Acta Metallurgica Sinica, 2014, 27(3): 546-556. [50]Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel[J]. Scripta Materialia, 2010, 63(10): 1028-1031. [51]Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels[J]. Scripta Materialia, 2013, 68(6): 343-347. [52]Kalashnikov I, Shalkevich A, Acselrad O, et al. Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system[J]. Journal of Materials Engineering and Performance, 2000, 9(6): 597-602. [53]Liu D, Cai M, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel[J]. Materials Science and Engineering A, 2017, 715: 25-32. [54]Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels[J]. Materials Science and Engineering A, 2016, 652: 69-76. [55]Jeong J, Lee C Y, Park I J, et al. Isothermal precipitation behavior of κ-carbide in the Fe-9Mn-6Al-0.15C lightweight steel with a multiphase microstructure[J]. Journal of Alloys and Compounds, 2013, 574: 299-304. [56]高志喆, 程福超, 冯一帆, 等. 时效时间对低密度超高锰铸钢组织性能的影响[J]. 金属热处理, 2021, 46(8): 115-120. Gao Zhizhe, Cheng Fuchao, Feng Yifan, et al. Effect of aging time on microstructure and properties of a low density ultra-high manganese cast steel[J]. Heat Treatment of Metals, 2021, 46(8): 115-120. [57]Han S Y, Shin S Y, Lee H J, et al. Effects of annealing temperature on microstructure and tensile properties in ferritic lightweight steels[J]. Metallurgical and Materials Transactions A, 2012, 43: 843-853. [58]Park S J, Hwang B, Lee K H, et al. Microstructure and tensile behavior of duplex low-density steel containing 5mass% aluminum[J]. Scripta Materialia, 2013, 68(6): 365-369. [59]吴志强. 高强度高塑性低密度钢的组织性能和变形机制研究[D]. 沈阳: 东北大学, 2015. Wu Zhiqiang. Investigations on the microstructures-properties relationship and deformation mechanism in high strength and high ductility low density steels[D]. Shenyang: Northeastern University, 2015. |