[1]Jin S, Morris J W, Zackay V F. Grain refinement through thermal cycling in an Fe-Ni-Ti cryogenic alloy[J]. Metallurgical Transactions A, 1975, 6(1): 141-149. [2]Jin S, Hwang S K, Morris J W. Comparative fracture toughness of an ultrafine grained Fe-Ni alloy at liquid helium temperature[J]. Metallurgical and Materials Transactions A, 1975, 6(8): 1569-1575. [3]Syn C K, Morris J W, Jin S. Cryogenic fracture toughness of 9Ni steel enhanced through grain refinement[J]. Metallurgical Transactions A, 1976, 7(12): 1827-1832. [4]Viswanathan U K, Kishore R, Asundi M K. Effect of thermal cycling on the mechanical properties of 350-grade maraging steel[J]. Metallurgical and Materials Transactions A, 1996, 27(3): 757-761. [5]Saul G, Roberson J A, Adair A M. The effects of thermal treatment on the austenitic grain size and mechanical properties of 18 Pct Ni maraging steels[J]. Metallurgical and Materials Transactions B, 1970, 1(2): 383-387. [6]Guo Z, Sha W, Wilson E A, et al. Improvingtoughness of PH13-8 stainless steel through intercritical annealing[J]. Transactions of the Iron and Steel Institute of Japan, 2007, 43(10): 1622-1629. [7]Yakovleva I L, Papshev V A, Mirzaev D A, et al. Structural inheritance of cast steels for road tools[J]. Metal Science and Heat Treatment, 2001, 43(7/8): 263-266. [8]Yugai S S, Kleiner L M, Shatsov A A, et al. Structural heredity in low-carbon martensitic steels[J]. Metal Science and Heat Treatment, 2004, 46(11/12): 539-544. [9]徐 锋, 孙 强, 孟吉炜. 固溶温度对超低碳15-5PH沉淀硬化不锈钢组织和性能的影响[J]. 金属热处理, 2024, 49(8): 124-129. Xu Feng, Sun Qiang, Meng Jiwei. Effect of solution treatment temperature on microstructure and properties of ultra-low carbon 15-5PH precipitation hardened stainless steel[J]. Heat Treatment of Metals, 2024, 49(8): 124-129. [10]杨 劼, 任慧平, 刘宗昌. 15Cr12CuSiMoMn钢的奥氏体晶粒长大动力学[J]. 金属热处理, 2022, 47(2): 53-58. Yang Jie, Ren Huiping, Liu Zongchang. Kinetics of austenite grain growth of 15Cr12CuSiMoMn steel[J]. Heat Treatment of Metals, 2022, 47(2): 53-58. |