[1]康永海, 李具仓. 304L和321不锈钢耐腐蚀性能研究[J]. 热加工工艺, 2015, 44(6): 81-82, 88. Kang Yonghai, Li Jucang. Corrosion resistance of 304L and 321 stainless steel[J]. Hot Working Technology, 2015, 44(6): 81-82, 88. [2]魏 杰, 郭 振, 冯 凯, 等. 固溶处理和稳定化处理对321不锈钢性能的影响[J]. 铸造技术, 2011, 32(12): 1652-1653. Wei Jie, Guo Zhen, Feng Kai, et al. Effects of solution and stabilizing treatments on properties of stainless steel 321[J]. Foundry Technology, 2011, 32(12): 1652-1653. [3]王 畅. TP321奥氏体不锈钢晶间腐蚀与晶界特征分布研究[D]. 南京: 东南大学, 2022. Wang Chang. Study on intergranular corrosion and grain boundary characteristic distribution of TP321 austenitic steel[D]. Nanjing: Southeast University, 2022. [4]杨柳青. 321不锈钢极薄带轧制实验及组织性能研究[D]. 沈阳: 东北大学, 2020. Yang Liuqing. Study on rolling experiment and microstructure and properties of 321 stainless steel foil[D]. Shenyang: Northeastern University, 2020. [5]程 洪, 葛美伶, 司天宇, 等. 机器学习辅助金属材料力学性能预测[J]. 材料研究与应用, 2023, 17(6): 1070-1077. Cheng Hong, Ge Meiling, Si Tianyu, et al. Machine learning-assisted prediction of mechanical properties of metallic materials[J]. Materials Research and Application, 2023, 17(6): 1070-1077. [6]李丰范, 匡健隆, 季佳浩, 等. 机器学习在金属材料服役性能预测中的应用[J]. 工程科学学报, 2024, 46(1): 120-136. Li Fengfan, Kuang Jianlong, Ji Jiahao, et al. Application of machine learning for predicting the service performance of metallic materials[J]. Chinese Journal of Engineering, 2024, 46(1): 120-136. [7]雷雨田, 王庆凯, 王 旭. 基于动态随机森林算法的铜浮选精矿品位预测[J]. 矿冶, 2022, 31(6): 110-113. Lei Yutian, Wang Qingkai, Wang Xu. Grade prediction of copper flotation concentrate based on dynamic random forest algorithm[J]. Mining and Metallurgy, 2022, 31(6): 110-113. [8]张东坤. 316L不锈钢增材制造工艺与力学性能相关性大数据研究[D]. 芜湖: 安徽工程大学, 2023. Zhang Dongkun. Study on preparation process and mechanical performance correlation big data of additive manufacturing 316L stainless steel[D]. Wuhu: Anhui Polytechnic University, 2023. |