[1] Peter J, Peaslee K D, Robertson D G. Review of progress in developing continuous steelmaking[J]. Iron and Steel Technology, 2005, 2(2): 53-60. [2] 李 缘, 栾道成, 胡志华, 等. 城际及高铁轨道用辙叉贝氏体钢的组织与性能[J]. 金属热处理, 2021, 46(8): 70-72. Li Yuan, Luan Daocheng, Hu Zhihua, et al. Microstructure and properties of bainitic steel for frog used in intercity and high-speed railway track[J]. Heat Treatment of Metals, 2021, 46(8): 70-72. [3] 齐祥羽, 严 玲, 李广龙, 等. 逆转变奥氏体稳定性对中锰钢强韧性的影响[J]. 金属热处理, 2021, 46(9): 205-210. Qi Xiangyu, Yan Ling, Li Guanglong, et al. Effect of reversed austenite stability on strength and toughness of medium-Mn steel[J]. Heat Treatment of Metals, 2021, 46(9): 205-210. [4] 郑红红, 赵爱民, 曹佳丽, 等. 水韧处理对高锰钢铸件组织与性能的影响[[J]. 金属热处理, 2014, 39(2): 112-115. Zheng Honghong, Zhao Aimin, Cao Jiali, et al. Effect of water toughening on microstructure and mechanical properties of high manganese steel casting[J]. Heat Treatment of Metals, 2014, 39(2): 112-115. [5] Long Xiaoyan, Liu Wei, Zhu Ranran, et al. Effect of the cooling rate in the medium temperature zone on the phase transformation and microstructure of carbide-free bainitic steel[J]. Journal of Materials Research and Technology, 2024, 29: 50-66. [6] 田亚强, 田 耕, 郑小平, 等. 低碳高强贝氏体钢的研究现状[J]. 钢铁研究学报, 2018, 30(7): 505-514. Tian Yaqiang, Tian Geng, Zheng Xiaoping, et al. Research status of low carbon high strength bainitic steel[J]. Journal of Iron and Steel Research, 2018, 30(7): 505-514. [7] 罗 平. 基于组织调控改善贝氏体钢轨钢的抗磨损和抗接触疲劳性能[D]. 北京: 北京交通大学, 2016. Luo Ping. Modification the resistance to wear and RCF for bainitic railway by tailoring microstructure[D]. Beijing: Beijing Jiaotong University, 2016. [8] 张家涛, 王洪纲, 钟 毅. 加热奥氏体化过程的数学模拟[J]. 昆明理工大学学报, 1997, 22(1): 135-138. Zhang Jiatao, Wang Honggang, Zhong Yi. Mathsmatical anology on process of austenizing during heating[J]. Journal of Kunming University of Science and Technology, 1997, 22(1): 135-138. |