[1] Cui X L, Ye H, Liu H Y, et al. The improvement mechanism of good matching between electrical conductivity and mechanical properties for Al-4Si-0.8Mg-0.6Fe alloy[J]. Journal of Alloys and Compounds, 2023, 938: 168275. [2] Ye H, Cui X L, Cui H W, et al. Study about improving mechanism of electrical conductivity of AA1070Al treated by a novel composite boron treatment with trace Ti[J]. Journal of Alloys and Compounds, 2021, 870: 159416. [3] 侯淞学, 汪 滢, 刘 艳, 等. 高导电率Al-Er-Cu合金导线的合金化与时效处理研究[J]. 热加工工艺, 2018, 47(14): 198-201. Hou Songxue, Wang Ying, Liu Yan, et al. Alloying and aging treatment of high conductivity Al-Er-Cu alloy wire[J]. Hot Working Technology, 2018, 47(14): 198-201. [4] Mavlyutov A M, Bondarenko A S, Murashkin M Y, et al. Effect of annealing on microhardness and electrical resistivity of nanostructured SPD aluminium[J]. Journal of Alloys and Compounds, 2017, 698: 539-546. [5] Rometsch P A, Xu Z, Zhong H, et al. Strength and electrical conductivity relationships in Al-Mg-Si and Al-Sc alloys[C] //Materials Science Forum. Trans Tech Publications Ltd, 2014, 794: 827-832. [6] Gorlov L E, Loginova I S, Glavatskikh M V, et al. Novel precipitation strengthened Al-Y-Sc-Er alloy with high mechanical properties, ductility and electrical conductivity produced by different thermomechanical treatments[J]. Journal of Alloys and Compounds, 2022, 918: 165748. [7] Lin G Y, Zhang Z P, Wang H Y, et al. Enhanced strength and electrical conductivity of Al-Mg-Si alloy by thermo-mechanical treatment[J]. Materials Science and Engineering A, 2016, 650: 210-217. [8] Zhu X Z, Yang H L, Dong X X, et al. The effects of varying Mg and Si levels on the microstructural inhomogeneity and eutectic Mg2Si morphology in die-cast Al-Mg-Si alloys[J]. Journal of Materials Science, 2019, 54: 5773-5787. [9] 潘 岩, 徐 宁, 刘伟南, 等. 高导电率高韧性6063铝合金导电轨工艺探究[J]. 有色金属加工, 2022, 51(1): 47-52, 57. Pan Yan, Xu Ning, Liu Weinan, et al. Research on conductive rail technology of 6063 aluminum alloy with high conductivity and toughness[J]. Nonferrous Metals Processing, 2022, 51(1): 47-52, 57. [10] Dong Q P, Zhang Y, Wang J H, et al. Enhanced strength-conductivity trade-off in Al-Mg-Si alloys with optimized Mg/Si ratio[J]. Journal of Alloys and Compounds, 2024, 970: 172682. [11] 范 唯, 向雪梅, 雷潘敏, 等. Mg/Si比对Al-Mg-Si-Zn合金自然时效效应的影响[J]. 电子显微学报, 2023, 42(6): 731-739. Fan Wei, Xiang Xuemei, Lei Panmin, et al. Effect of Mg/Si ratio on the natural aging effect in Al-Mg-Si-Zn alloys[J]. Journal of Chinese Electron Microscopy Society, 2023, 42(6): 731-739. [12] Wang Y, Zhu L, Niu G, et al. Conductive Al alloys: The contradiction between strength and electrical conductivity[J]. Advanced Engineering Materials, 2021, 23(5): 2001249. [13] Ding W W, Zhao X Y, Chen T L, et al. Effect of rare earth Y and Al-Ti-B master alloy on the microstructure and mechanical properties of 6063 aluminum alloy[J]. Journal of Alloys and Compounds, 2020, 830: 154685. [14] Wang W Y, Pan Q L, Jiang F Q, et al. Microstructure evolution and performances of Al-0.7Mg-0.6Si-0.2Ce-X (X=Sc, Y and Zr) alloys with high strength and high electrical conductivity[J]. Journal of Alloys and Compounds, 2022, 895: 162654. [15] Iva Nová, Jií Machuta, Raur L. The influence of microalloying on the thermal treatment of aluminum bronzes[J]. Manufacturing Technology, 2017, 17(5): 797-804. [16] Chen H N, Lu J B, Kong Y, et al. Atomic scale investigation of the crystal structure and interfaces of the B′ precipitate in Al-Mg-Si alloys[J]. Acta Materialia, 2020, 185: 193-203. [17] Smyrak B, Jurkiewicz B, Magorzata Zasadzińska, et al. The effect of Al-Mg-Si wire rod heat treatment on its electrical conductivity and strength[J]. Metals, 2020, 10(8): 1027. [18] Weng Y Y, Xu Y Q, Ding L P, et al. Effect of Sn contents on natural aging and precipitation hardening in Al-Mg-Si alloys[J]. Materials Characterization, 2021, 179: 111383. [19] 郑 革, 陈 杰, 牛堃宁, 等. Cu含量及T6处理对电力金具用铝合金组织性能的影响[J]. 金属热处理, 2022, 47(8): 217-223. Zheng Ge, Chen Jie, Niu Kunning, et al. Effect of Cu content and T6 treatment on microstructure and properties of aluminum alloy used for electric power fittings[J]. Heat Treatment of Metals, 2022, 47(8): 217-223. [20] 张贵钊, 姜 锋, 周 巍, 等. 不同处理态Al-Mg-Si铝合金的组织性能[J]. 金属热处理, 2020, 45(2): 51-55. ZhangGuizhao, Jiang Feng, Zhou Wei, et al. Microstructure and properties of Al-Mg-Si aluminum alloy with different treatments[J]. Heat Treatment of Metals, 2020, 45(2): 51-55. [21] 谭 勇, 王乙舒, 周 炜, 等. 热处理对Al-Mg-Si-Cu铝合金组织和性能的影响[J]. 热加工工艺, 2022, 51(22): 130-133. Tan Yong, Wang Yishu, Zhou Wei, et al. Effects of heat treatment on microstructure and properties of Al-Mg-Si-Cu aluminum alloy[J]. Hot Working Technology, 2022, 51(22): 130-133. [22] 郑秋菊. La微合金化对Al-(Mg)-Si合金组织及性能影响的研究[D]. 合肥: 中国科学技术大学, 2023. Zheng Qiuju. Effect of micro-alloying element La on the microstructures and properties of Al-(Mg)-Si alloys[D]. Hefei: University of Science and Technology of China, 2023. [23] Zhang M S, Wang J S, Han J Q, et al. Optimization of heat treatment process of Al-Mg-Si cast alloys with Zn additions by simulation and experimental investigations[J]. Calphad, 2019, 67: 101684. [24] Hou J P, Wang Q, Zhang Z J, et al. Nano-scale precipitates: The key to high strength and high conductivity in Al alloy wire[J]. Materials and Design, 2017, 132: 148-157. [25] 陈庆吟, 盛叶弘, 李 瑞, 等. Al-Mg-Si合金线导电率演变规律与机制[J]. 金属热处理, 2021, 46(3): 175-180. Chen Qingyin, Sheng Yehong, Li Rui, et al. Evolution law and mechanisms of electrical conductivity of Al-Mg-Si alloy wire[J]. Heat Treatment of Metals, 2021, 46(3): 175-180. [26] 张国君, 袁生平, 王瑞红, 等. 粗大第二相及时效析出相对Al-Mg-Si合金延性断裂的耦合影响[J]. 中国有色金属学报, 2009, 19(11): 1894-1901. Zhang Guojun, Yuan Shengping, Wang Ruihong, et al. Coupled influence of constituents and precipitates on ductile fracture of Al-Mg-Si alloys[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(11): 1894-1901. |