[1]Staley J T, Liu J, Hunt J W H. Aluminum alloys for areostructures[J]. Advanced Materials and Processes, 1997, 152: 10-17. [2]Heinz A, Haszler A, Keidel C, et al. Recent development in aluminum alloys for aerospace applications[J]. Materials Science and Engineering A, 2000, 280: 102-107.[3]Dursun T, Soutis C. Recent developments in advanced aircraft aluminum alloys[J]. Materials and Design, 2014, 56: 862-871. [4]梁 信, 陈庚华, 陈学海, 等. 等温锻造速率对7085铝合金组织与性能的影响[J]. 粉末冶金材料科学与工程, 2011, 16(2): 290-295. Liang Xin, Chen Genghua, Chen Xuehai, et al. Effect of isothermal forging rate on microstructure and properties of 7085 aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2011, 16(2): 290-295. [5]Todinov M T. Mechanism for formation of the residual stress from quenching[J]. Model Simulation Science Engineer, 1998, 6: 273-276. [6]Tanner D A, Robinson S. Residual stress prediction and determination in 7010 aluminum alloy forgings[J]. Experimental Mechanics, 2000, 40: 75-78. [7]王亚楠, 吴运新, 龚 海, 等. 初始残余应力对铝合金T形构件加工变形的影响[J]. 热加工工艺, 2019, 48(14): 63-67. Wang Yanan, Wu Yunxin, Gong Hai, et al. Effect of initial residual stresses on machining deformation of aluminum alloy T-shaped components[J]. Hot Working Technology, 2019, 48(14): 63-67. [8]Rao K P, Prasad Y. High temperature deformation kinetics of Al-4Mg alloy[J]. Journal of Mechanical Working Technology, 1986, 13: 83-95. [9]Prasad Y, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 1998, 43(6): 243-258. [10]Huang K, Loge R E. A review of dynamic recrystallization phenomena in metallic materials[J]. Materials and Design, 2016, 111: 548-574. [11]Le A T H, Cao H P, Kim J R R. Mechanical properties and residual stresses in cold-rolled aluminium channel sections[J]. Engineering Structures, 2019, 199(15): 109562. [12]Zhan Y, Li Y M, Zhang E, et al. Laser ultrasonic technology for residual stress measurement of 7075 aluminum alloy friction stir welding[J]. Applied Acoustics, 2019, 145: 52-59. |