[1]Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications[J]. Materials Science and Engineering A, 2000, 280(1): 102-107. [2]张新明, 柯 彬, 唐建国, 等. Mn含量对6061铝合金组织与力学性能的影响[J]. 材料研究学报, 2013, 27(4): 337-341. Zhang Xinming, Ke Bin, Tang Jianguo, et al. Effects of Mn content on microstructure and mechanical properties of 6061 aluminum alloy[J]. Chinese Journal of Materials Research, 2013, 27(4): 337-341. [3]Yuan H C, Wang C, Zhang J S. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy[J]. International Journal of Minerals Metallurgy and Materials, 2013, 20(7): 659-664. [4]周学浩, 孙有平, 张扬扬, 等. 均匀化处理对Al-Mg-Si-Cu合金铸态组织与性能的影响[J]. 金属热处理, 2017, 42(6): 93-97. Zhou Xuehao, Sun Youping, Zhang Yangyang, et al. Effect of homogenizing treatment on microstructure and mechanical properties of as-cast Al-Mg-Si-Cu alloy[J]. Heat Treatment of Metals, 2017, 42(6): 93-97. [5]周 珊, 孙有平, 王文熙, 等. Cu含量对Al-Mg-Si合金显微组织及力学性能的影响[J]. 金属热处理, 2019, 44(3): 78-82. Zhou Shan, Sun Youping, Wang Wenxi, et al. Effect of Cu content on microstructure and mechanical properties of Al-Mg-Si alloy[J]. Heat Treatment of Metals, 2019, 44(3): 78-82. [6]Wang X F, Guo M X, Cao L Y, et al. Influence of thermomechanical processing on microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheets[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 1752-1762. [7]Wang Z, Li H, Miao F, et al. Improving the intergranular corrosion resistance of Al-Mg-Si-Cu alloys without strength loss by a two-step aging treatment[J]. Materials Science and Engineering A, 2014, 590: 267-273. [8]董 颖, 窦志家, 康 铭, 等. 淬火方式和时效工艺对Al-Mg-Si-Cu系合金性能影响[J]. 有色金属加工, 2018, 47(5): 53-55. Dong Ying, Dou Zhijia, Kang Ming, et al. Effect of quenching and aging process on performance of Al-Mg-Si-Cu alloy[J]. Nonferrous Metals Processing, 2018, 47(5): 53-55. [9]张 放, 刘艳芬, 李继林, 等. 固溶温度对6181A铝合金板材显微组织和性能的影响[J]. 铸造技术, 2017, 38(5): 70-74. Zhang Fang, Liu Yanfen, Li Jilin, et al. Effect of solution treatment temperature on microstructure and properties of 6181 aluminum alloy[J]. Foundry Technology, 2017, 38(5): 70-74. [10]李美春, 邓运来, 唐建国, 等. 不同时间固溶后6061铝合金中厚板的组织、性能及表面残余应力[J]. 机械工程材料, 2014, 38(4): 39-45. Li Meichun, Deng Yunlai, Tang Jianguo, et al. Microstructure properties and surface residual stress of 6061 aluminum alloy thick plates after solution treatment for different times[J]. Materials for Mechanical Engineering, 2014, 38(4): 39-45. [11]马严玮, 王宝雨, 校文超, 等. 固溶时效工艺对6016铝合金力学性能的影响及多目标优化[J]. 工程科学学报, 2017, 39(1): 75-80. Ma Yanwei, Wang Baoyu, Xiao Wenchao, et al. Effect of solution and aging processes on the mechanical properties of 6016 aluminum alloy andmulti-objective optimization[J]. Chinese Journal of Engineering, 2017, 39(1): 75-80. [12]贾 铮, 戴长松, 陈 玲. 电化学测量方法[M]. 北京: 化学工业出版社, 2006. [13]单毅敏, 罗兵辉, 柏振海. 5083铝合金在3.5%NaCl溶液中的电化学腐蚀行为研究[J]. 铝加工, 2007(1): 11-14. Shan Yimin, Luo Binghui, Bai Zhenhai. Study on the electrochemical corrosion behaviour of 5083 aluminum alloy in 3.5%NaCl solution[J]. Aluminium Fabrication, 2007(1): 11-14. |