[1]李卫民. 20CrMnTi 钢渗碳淬火回火工艺改进[J]. 铸造技术, 2018, 39(11): 2598-2600. Li Weimin. Improvement of carburizing and quenching tempering process for 20CrMnTi steel[J]. Foundry Technology, 2018, 39(11): 2598-2600. [2]张 民, 王 忠, 冯显磊, 等. 20CrMnTi钢齿轮疲劳寿命研究[J]. 热处理, 2017, 32(6): 9-12. Zhang Min, Wang Zhong, Feng Xianlei, et al. Research on fatigue life of 20CrMnTi steel gear[J]. Heat Treatment, 2017, 32(6): 9-12. [3]李 俊, 黄 健, 贾 涛. 初始组织对 20CrMnTi 钢伪渗碳过程中奥氏体化相变与晶粒长大行为的影响[J]. 金属热处理, 2020, 45(6): 157-163. Li Jun, Huang Jian, Jia Tao. Effect of initial microstructure on austenite transformation and grain growth behavior of 20CrMnTi steel during pseudo-carburizing process[J]. Heat Treatment of Metals, 2020, 45(6): 157-163. [4]Zhao Xinhai, Liu Dandan, Wu Xianghong, et al. Flow behavior and constitutive description of 20CrMnTi steel at high temperature[J]. Journal of Central South University, 2018, 25(5): 1013-1024. [5]宁勤恒, 董俊媛, 李永刚, 等. 大规格 NM450 钢板喷水淬火有限元模拟[J]. 金属热处理, 2018, 43(10): 221-226. Ning Qinheng, Dong Junyuan, Li Yonggang, et al. Finite element simulation of water jet quenching for large NM450 steel plate[J]. Heat Treatment of Metals, 2018, 43(10): 221-226. [6]张李强, 王 婧, 骆晓萌, 等. 热处理过程流场-温度场-组织场-应力场耦合模拟研究[J]. 金属热处理, 2017, 42(8): 181-186. Zhang Liqiang, Wang Jing, Luo Xiaomeng, et al. Coupled numerical simulation of flow field, temperature field, microstructure field and stress field on heat treatment process[J]. Heat Treatment of Metals, 2017, 42(8): 181-186. [7]Xiao Furen, Bo Liao, Shan Yiyin, et al. Isothermal transformation of low-carbon microalloyed steels[J]. Materials Characterization, 2005, 54(4/5): 417-422. [8]肖 鹏, 陆秦旭, 戴 宪, 等. GCrl5钢在时效过程中的相变动力学及组织演变[J]. 金属热处理, 2018, 43(4): 77-81. Xiao Peng, Lu Qinxu, Dai Xian, et al. Kinetics and microstructural evolution of GCr15 steel during aging[J]. Heat Treatment of Metals, 2018, 43(4): 77-81. [9]达传李, 杨庚蔚, 毛新平, 等. CSP热轧50CrV4弹簧钢等温相变行为[J]. 钢铁研究学报, 2018, 30(2): 132-138. Da Chuanli, Yang Gengwei, Mao Xinping, et al. Isothermal transformation behavior of CSP hot rolled 50CrV4 spring steel[J]. Journal of Iron and Steel Research, 2018, 30(2): 132-138. [10]吴 楠, 崔雪飞, 魏衍广, 等. Cr含量对Ti5Mo5V3Al-Cr系合金等温相变动力学和TTT图的影响[J]. 材料工程, 2018, 46(9): 115-121. Wu Nan, Cui Xuefei, Wei Yanguang, et al. Effect of Cr content on isothermal transformation kinetics and TTT diagram of Ti5Mo5V3Al-Cr alloys[J]. Journal of Materials Engineering, 2018, 46(9): 115-121. [11]熊 虎, 梁 宇, 李 静. 高碳盘条钢等温转变动力学曲线与微观组织[J]. 金属热处理, 2016, 41(12): 5-9.Xiong Hu, Liang Yu, Li Jing. Isothermal transformation kinetic curves and microstructure of high carbon wire steel[J]. Heat Treatment of Metals, 2016, 41(12): 5-9. [12]陈梽雄, 左鹏鹏, 闵 娜. 4Cr5Mo2V钢贝氏体等温相变动力学[J]. 材料热处理学报, 2018, 39(5): 147-152. Chen Zhixiong, Zuo Pengpeng, Min Na. Bainite isothermal transformation kinetics of 4Cr5Mo2V steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(5): 147-152. [13]彭红兵, 陈伟庆, 陈 列. Sn对20CrMnTi齿轮钢连续冷却转变曲线及力学性能的影响[J]. 金属热处理, 2013, 38(12): 35-38. Peng Hongbing, Chen Weiqing, Chen Lie. Effects of Sn on continuous cooling transformation curves and mechanical properties of 20CrMnTi gear steel[J]. Heat Treatment of Metals, 2013, 38(12): 35-38. [14]Li Lizhang, Wei He, Liao Linlin, et al. Continuous cooling phase transformation rule of 20CrMnTi low-carbon alloy steel[J]. Materials Science Forum, 2019, 944: 303-312. [15]Avrami Melvin. Kinetics of phase change. I general theory[J]. The Journal of Chemical Physics, 1939(7): 1103-1105. [16]Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metallurgica, 1959, 7(1): 59-60. |