[1]Liu Z, Xie X. The Chinese 700 ℃ A-USC Development Program[M]//Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants. Woodhead Publishing, 2017: 715-731. [2]Di Gianfrancesco A, Blum R. A-USC Programs in the European Union[M]//Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants. Woodhead Publishing, 2017: 773-846. [3]Di Gianfrancesco A. A-USC R&D Programs in Other Countries[M]//Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants. Woodhead Publishing, 2017: 755-772. [4]Abe F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 ℃ and above[J]. Engineering, 2015, 1(2): 211-224. [5]田仲良, 包汉生, 何西扣, 等. 700 ℃汽轮机转子用耐热合金的研究进展[J]. 钢铁, 2015, 50(2): 54-60. Tian Zhongliang, Bao Hansheng, He Xikou, et al. Research development on the heat resistant alloy used for 700 ℃ USC turbine rotor[J]. Iron and Steel, 2015, 50(2): 54-60. [6]Blum R, Vanstone R W, Messelier Gouze C. Materials development for boilers and steam turbines operating at 700 ℃[J]. Book-Institute of Materials, 2003, 800: 489-510. [7]王天剑, 范 华, 张邦强, 等. 700 ℃超超临界汽轮机关键部件用镍基高温合金选材[J]. 东方汽轮机, 2012(2): 46-53. Wang Tianjian, Fan Hua, Zhang Bangqiang, et al. Nickel-based superalloy for key components of ultra-supercritical steam turbine operating above 700 ℃[J]. Dongfang Turbine, 2012(2): 46-53. [8]Holcomb G R. Oxidation of advanced steam turbine alloys[J]. Materials Science Forum, 2008, 595-598: 299-306. [9]Wright I G, Maziasz P J, Ellis F V, et al. Materials issues for turbines for operations in ultra-supercritical steam[C]//Proceedings of the 29th Internal Conf on Coal Utilization and Fuel Systems, 2004: 1079-1092. [10]Masafumi Fukuda, Eiji Saito, Yoshinori Tanaka, et al. Advanced USC technology development in Japan[C]//Proceedings from the 6th International Conference on Advances in Materials Technology for Fossil Plants, 2010: 325-341. [11]张 涛, 卫志刚, 田力男, 等. 700 ℃等级超超临界燃煤锅炉用金属材料应用分析[J]. 内蒙古电力技术, 2015, 33(5): 20-25. Zhang Tao, Wei Zhigang, Tian Linan, et al. Metal materials application analysis of 700 ℃ level advanced ultra-supercritical coal-fired boiler[J]. Inner Mongolia Electric Power, 2015, 33(5): 20-25. [12]Tytko D, Choi P P, Klöwer J, et al. Microstructural evolution of a Ni-based superalloy (617B) at 700 ℃ studied by electron microscopy and atom probe tomography[J]. Acta Materialia, 2012, 60(4): 1731-1740. [13]程世长, 刘正东, 包汉生. 700 ℃超超临界火电机组锅炉合金进展[C]//第九届电站金属材料学术年会论文集. 四川成都, 2011: 273-277. [14]迟成宇, 于鸿垚, 谢锡善. 世界700 ℃等级先进超超临界电站关键高温材料[J]. 世界钢铁, 2013, 13(2): 42-59. Chi Chengyu, Yu Hongyao, Xie Xishan. Critical high temperature materials for 700 ℃ A-USC power plants[J]. World Iron and Steel, 2013, 13(2): 42-59. [15]王敬忠, 刘正东, 包汉生, 等. 中国超超临界电站锅炉关键材料用钢及合金的研究现状[J]. 钢铁, 2015, 50(8): 1-9. Wang Jingzhong, Liu Zhengdong, Bao Hansheng, et al. Study of steel and alloys for ultra-supercritical power plant in China[J]. Iron and Steel, 2015, 50(8): 1-9. [16]陈正宗, 刘正东, 包汉生, 等. 固溶温度对新型耐热合金晶界特性的影响[J]. 金属热处理, 2017, 42(1): 31-34. Chen Zhengzong, Liu Zhengdong, Bao Hansheng, et al. Effect of solution temperature on grain boundary character in new heat-resistant alloy[J]. Heat Treatment of Metals, 2017, 42(1): 31-34. [17]Feltham P. Grain growth in metals[J]. Acta Metallurgica, 1957, 5(2): 97-105. [18]黄 燕, 戴起勋, 李冬升, 等. 固溶处理对800H合金组织和硬度的影响[J]. 金属热处理, 2012, 37(3): 73-76. Huang Yan, Dai Qixun, Li Dongsheng, et al. Effect of solution treatment on microstructure and hardness of 800H alloy[J]. Heat Treatment of Metals, 2012, 37(3): 73-76. [19]邹庆化. 金属材料强度与硬度之间的相关关系[J]. 金属热处理, 1993, 13(1): 53-55. [20]丰 涵, 宋志刚, 郑文杰, 等. 固溶处理对Inconel 690合金组织和力学性能的影响[J]. 钢铁研究学报, 2009, 21(3): 46-50. Feng Han, Song Zhigang, Zheng Wenjie, et al. Effect of solution treatment on microstructure and mechanical property of Inconel 690[J]. Journal of Iron and Steel Research, 2009, 21(3): 46-50. [21]Radis R, Schaffer M, Albu M, et al. Multimodal size distributions of γ′ precipitates during continuous cooling of UDIMET 720 Li[J]. Acta Materialia, 2009, 57(19): 5739-5747. [22]Singh A R P, Nag S, Hwang J Y, et al. Influence of cooling rate on the development of multiple generations of γ′ precipitates in a commercial nickel base superalloy[J]. Materials Characterization, 2011, 62(9): 878-886. [23]Singh A R P, Nag S, Chattopadhyay S, et al. Mechanisms related to different generations of γ′ precipitation during continuous cooling of a nickel base superalloy[J]. Acta Materialia, 2013, 61(1): 280-293. [24]Blum R, Vanstone R W, Messelier-Gouze C. Materials development for boilers and steam turbines operating at 700 ℃[C]//Proceedings from the Fourth International Conference on Advances in Materials Technology for Fossil Power Plants, Hilton Head Island, South Caro-lina, 2005: 116-136. [25]Guo Y, Wang B, Hou S. Aging precipitation behavior and mechanical properties of Inconel 617 superalloy[J]. Acta Metallurgica Sinica (English Letters), 2013, 26(3): 307-312. |