[1]董士龙. 激光表面处理球墨铸铁轧辊的性能研究[D]. 沈阳: 沈阳工业大学, 2014. Dong Shilong. Research on the performance of nodular cast iron roller laser alloying[D]. Shengyang: Shenyang University of Technology, 2014. [2]刘喜明. Co基自熔合金+WC送粉激光熔覆层再加热冷却过程中的显微组织变化特征[J]. 稀有金属材料与工程, 2007, 36(4): 621-624. Liu Ximing. Microstructure evolution of laser cladding with feeding powder for Co-based alloy in addition with WC in reheating and cooling process[J]. Rare Metal Materials and Engineering, 2007, 36(4): 621-624. [3]冯 涤, 韩光炜, 柳光祖. 陶瓷相弥散强化合金及颗粒增强金属基复合材料制备方法: CN 1281053 A[P]. 2001-01-24. Feng Di, Han Guangwei, Liu Guangzu. Methods for preparation of ceramic phase dispersion reinforced alloy and particle reinforced metal matrix composites: CN 1281053 A[P]. 2001-01-24. [4]Liu S N, Liu Z D, Yang W, et al. Ti-based composite coatings with gradient TiCx reinforcements on TC4 titanium alloy prepared by laser cladding[J]. Science China, 2014, 57(7): 1454-1461. [5]杨文庆, 卢 军. 激光能量密度对金属粉末直接激光烧结球化的影响[J]. 工具技术, 2008, 42(3): 61-63. Yang Wenqing, Lu Jun. Effect of specific energy on spheroidization during direct laser sintering of metal powder[J]. Tool Engineering, 2008, 42(3): 61-63. [6]Wei L, Jie L, Yan Z, et al. Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: Microstructure, phase and mechanical properties[J]. Journal of Alloys and Compounds, 2016, 688: 626-636. [7]冯雪飞. 磨损率方程的比较研究[J]. 天津理工大学学报, 1998(7): 43-45. Feng Xuefei. Acomparion of some wear rate equations[J]. Journal of Tianjian Institute of Technology, 1998(7): 43-45. [8]Dong L, Zhang J. Research status of heterogeneous gradient feature for laser welded joint of Ti6Al4V alloy[J]. Rare Metal Materials and Engineering, 2013, 42(3): 655-660. [9]丁 春. 轧辊表面激光合金化材料制备与性能分析[D]. 苏州: 苏州大学, 2014. Ding Chun. Material preparation and performance analysis of laser surface alloying of roller[D]. Suzhou: Suzhou University, 2014. [10]王学伟. 夹送辊激光处理的工艺优化与组织性能研究[D]. 沈阳: 东北大学, 2012. Wang Xuewei. Study on process optimization and microstructure properties of the laser treated pinch rolls[D]. Shengyang: Northeastern University, 2012. [11]Yao Wenjing, Niu Xiuling, Zhou Long, et al. Competition growth of α and β phases in Ti-50%Al peritectic alloy during the rapid solidification by laser melting technique[J]. Acta Metallurgica Sinica, 2013, 26(5): 523-532. [12]齐 凯. 球墨铸铁高温塑性变形行为研究及其应用[D]. 大连: 大连理工大学, 2009. Qi Kai. Study on high temperature plastic deformation behavior of ductile iron and its application[D]. Dalian: Dalian University of Technology, 2009. [13]徐国建, 李宏利, 邢 飞, 等. 球墨铸铁轧辊的光纤激光合金化性能[J]. 沈阳工业大学学报, 2015, 37(1): 39-43. Xu Guojian, Li Hongli, Xing Fei, et al. Fiber laser alloying performance of ductile iron roller[J]. Journal of Shenyang University of Technology, 2015, 37(1): 39-43. [14]Mondal A K, Kumar S, Blawert C, et al. Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy[J]. Surface and Coatings Technology, 2008, 202(14): 3187-3198. [15]吴 宇, 王文焱, 王 沛, 等. 球墨铸铁表面复合碳化物激光合金化层组织与性能研究[J]. 矿山机械, 2010(22): 54-57. Wu Yu, Wang Wenyan, Wang Pei, et al. Research on microstructure and performance of complex carbides laser alloyed coating on surface of ductile cast iron[J]. Mining and Processing Equipment, 2010(22): 54-57. [16]Quazi M M, Fazal M A, Haseeb A S M A, et al. A review to the laser cladding of self-lubricating composite coatings[J]. Lasers in Manufacturing and Materials Processing, 2016, 3(2): 67-99. [17]Qi Y L, Chen H Y, Shu C Y, et al. Wear and corrosion behaviours of FeCrNiSi alloy coatings by laser cladding[J]. Materials Science Forum, 2017, 898: 1406-1413. [18]Jia Q, Gu D. Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms[J]. Optics and Laser Technology, 2014, 62(10): 161-171. |