[1]Shukla R, Ghosh S K, Chakrabarti D, et al. Microstructure, texture, property relationship in thermo-mechanically processed ultra-low carbon micro-alloyed steel for pipeline application[J]. Materials Science and Engineering A, 2013, 587: 201-208. [2]Hwang B, Lee C G, Kim S J. Low temperature toughening mechanism in thermomechanical processed high strength low alloy steels[J]. Materials Science and Engineering A, 2011, 42: 717-728. [3]Zhang Y Q, GuoA M, Shang C J, et al. Latest development and application of high strength and heavy gauge pipeline steel in China[J]. Journal of Mechanical Engineering, 2016, 6: 19-24. [4]Xiao F R, Liao B, ShanY Y, et al. Challenge of mechanical properties of an acicular ferrite pipeline steel[J]. Materials Science and Engineering A, 2006, 431: 41-52. [5]杨 杰, 李春福, 申文竹. 针状铁素体形成的研究现状及应用前景[J]. 金属热处理, 2013, 38(2): 21-25. Yang Jie, Li Chunfu, Shen Wenzhu. Research status and application propest of formation of acicular ferrite[J]. Heat Treatment of Metals, 2013, 38(2): 21-25. [6]Joo M S, Suh D W, Bae J H, et al. Toughness anisotropy in X70 and X80 pipeline steels[J]. Materials Science and Engineering A, 2012, 556: 601-606. [7]Jabr A, Speer H M, John G. Anisotropy of mechanical properties of API X70 spiral welded pipe steels[J]. Material Science Forum, 2013, 753: 538-541. [8]Xiao F R, Liao B, Ren D L, et al. Acicular ferritic microstructure of a low-carbon Mn-Mo-Nb micro-alloyed pipeline steel[J]. Material Characterization, 2005, 54: 305-314. [9]Sanchez N, PetrovR, BaeJ H, et al. Texture dependent mechanical anisotropy of X80 pipeline steel[J]. Advanced Engineering Materials, 2010, 12 : 973-980. [10]Jung S B, Jae H S, Jin Y S, et al. Inoculated acicular ferrite microstructure and mechanical properties[J]. Materials Science and Engineering A, 2001, 319-321: 326-331. [11]Yang X L, Xu Y B, Tan X D, et al. Influences of crystallography and delamination on anisotropy of charpy impact toughness in API X100 pipeline steel[J]. Materials Science and Engineering A, 2014, 607: 53-62. [12]Cheng S X, Zhang X Y, Zhang J X, et al. Effect of coiling temperature on microstructure and properties of X100 pipeline steel[J]. Materials Science and Engineering A, 2016, 666: 156-164. [13]张 海, 李少坡, 丁文华, 等. 显微组织与晶体学织构对X80管线钢拉伸强度各向异性的影响[J]. 金属热处理, 2018, 48(2): 68-72. Zhang Hai, Li Shaopo, Ding Wenhua, et al. Effects of microstructure and crystallographic texture on anisotropy of tensile strength of X80 pipeline steel[J]. Heat Treatment of Metals, 2018, 48(2): 68-72. [14]Masoumi M, Silva C C, Abreu H F G, et al. Effect of rolling in the recrystallization temperature region associated with a post-heat treatment on the microstructure, crystal orientation, and mechanical properties of API 5L X70 pipeline steel[J]. Materials Research, 2017, 20(1):151-160. [15]邓灿明, 李昭东, 孙新军, 等. 低碳板条马氏体钢中大角度界面对解理裂纹扩展的影响机理[J]. 机械工程材料, 2014, 38(6): 20-24. Deng Chanming, Li Zhaodong, Sun Xinjun, et al. Influence mechanism of high angle boundary on propagation of cleavage cracks in low carbon lath martensite steel[J]. Materials for Mechanical Engineering, 2014, 38(6): 20-24. [16]沈俊昶, 罗志俊, 杨才福, 等. 板条组织低合金钢中影响低温韧性的“有效晶粒尺寸”[C]//中国金属学会低合金钢分会第一届学术年会, 2012: 1-10. [17]Yang X L, Xu Y B, Tan X D. Relationships among crystallographic texture, fracture behavior and Charpy impact toughness API X100 pipeline steel[J]. Materials Science and Engineering A, 2015, 641: 96-106. [18]Zhao J, Hu W, Wang X, et al. Effect of microstructure on the crack propagation behavior of micro-alloyed 560 MPa (X80) strip during ultra-fast cooling[J]. Materials Science and Engineering A, 2016, 666: 214-224. [19]崔桂彬, 鞠新华, 郭 鹏, 等. X80管线钢中M/A岛的EBSD结构表征[J]. 电子显微学报, 2014, 33(5): 423-428. Cui Guibin, Ju Xinhua, Guo Peng, et al. EBSD characterization on the structure of M/A islands of X80 pipeline steel[J]. Journal of Chinese Electron Microscopy Society, 2014, 33(5): 423-428. [20]贾书君, 刘清友, 李 拔. EBSD技术在厚规格管线钢DWTT研究中的应用[J]. 金属热处理, 2016, 41(4): 197-200. Jia Shujun, Liu Qingyou, Li Ba. Application of EBSD technology on DWTT research of thickness specification pipeline steel[J]. Heat Treatment of Metals, 2016, 41(4): 197-200. [21]张小立, 冯耀荣, 庄传晶, 等. 高钢级管线钢中有效晶粒尺寸及与CVN关系研究[J]. 材料工程, 2008, 7: 1-5. Zhang Xiaoli, Feng Yaorong, Zhuang Chuanjing, et al. Study on effective particle size of high-grade pipeline steels and relationship between CVN[J]. Journal of Materials Engineering, 2008, 7: 1-5. [22]艾 芒, 杨 镇, 王志文. 小孔试验法的起源、发展和应用[J]. 机械强度, 2004, 22(4): 279-282. Ai Mang, Yang Zhen, Wang Zhiwen. Origination development and application of small punch test method[J]. Journal of Mechanical Strength, 2004, 22(4): 279-282. |