[1]卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1-4. Lu Bingheng, Li Dichen. Development of the additive manufacturing(3D printing) technology[J]. Machine Building and Automation, 2013, 42(4): 1-4. [2]李小丽, 马剑雄, 李 萍, 等. 3D打印技术及应用趋势[J]. 自动化仪表, 2014, 35(1): 1-5. Li Xiaoli, Ma Jianxiong, Li Ping, et al. 3D printing technology and its application trend[J]. Process Automation Instrumentation, 2014, 35(1): 1-5. [3]易 明. 激光增材制造316L不锈钢的显微组织与力学性能研究[D]. 长沙: 湖南大学, 2019. Yi Ming. Study on microstructure and mechanical properties of 316L stainless steel by laser additive manufacturing[D]. Changsha: Hunan University, 2019. [4]尹衍军. 选区激光熔化成形316L不锈钢流动规律及组织、性能研究[D]. 北京: 北京科技大学, 2019. Yin Yanjun. Study of flow law, microstructure and mechanical properties of 316L stainless steel by selective laser melting[D]. Beijing: University of Science and Technology Beijing, 2019. [5]王 迪. 选区激光熔化成型不锈钢零件特性与工艺研究[D]. 广州: 华南理工大学, 2006. Wang Di. Study on the fabrication properties and process of stainless steel parts by selective laser melting[D]. Guangzhou: South China University of Technology, 2006. [6]陈莹莹. 316L不锈钢微细球形粉末的制备及其SLM成形试验研究[D]. 广州: 华南理工大学, 2018. Chen Yingying. Preparation of 316L stainless steel microsphere powders and research on its SLM forming test[D]. Guangzhou: South China University of Technology, 2018. [7]Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117(1): 371-392. [8]Wang Chengcheng, Tan Xipeng, Liu Erjia, et al. Process parameter optimization and mechanical properties for additively manufactured stainless steel 316L parts by selective electron beam melting[J]. Materials and Design, 2018, 147(1): 157-166. [9]Li Zan, Voisin Thomas, McKeoun J T, et al. Tensile properties, strain rate sensitivity, and activation volume of additively manufactured 316L stainless steels[J]. International Journal of Plasticity, 2019, 120(1): 395-410. [10]Qiu C, Kindi M A, Aladawi A S, et al. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel[J]. Scientific Reports, 2018, 8(1): 1-16. [11]Nguyen Q B, Zhu Z, Ng F L, et al. High mechanical strengths and ductility of stainless steel 304L fabricated using selective laser melting[J]. Journal of Materials Science and Technology, 2019, 35(2): 388-394. [12]Wang D, Song C, Yang Y, et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts[J]. Materials and Design, 2016, 100(1): 291-299. [13]Michał Ziętala, Durejko T, Marek Polański, et al. The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping[J]. Materials Science and Engineering A, 2016, 677(1): 1-10. [14]Yang Y, Zhu Y, Khonsari M M, et al. Wear anisotropy of selective laser melted 316L stainless steel[J]. Wear, 2019, 428-429(1): 376-386. [15]Shifeng W, Shuai L, Qingsong W, et al. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts[J]. Journal of Materials Processing Technology, 2014, 214(11): 2660-2667. |