[1] Czyryca E J.Advances in high strength steel technology for Naval Hull construction[J].Key Engineering Materials,1993,84-85:491-520. [2] 赵一鸣,郑德兵,柳一凡.基于车身轻量化技术的高强钢应用趋势[J].汽车与配件,2016(46):76-79. [3] Lee E W,Neu C E,Kozol J.Al-Li alloys and ultrahigh-strength steels for US Navy aircraft[J].JOM,1990,42(5):11-15. [4] Krauss G.Deformation and fracture in martensitic carbon steels tempered at low temperatures[J].Metallurgical and Materials Transactions A,2001,32(4):861-877. [5] Nunes M M,Silva E M D,Renzetti R A,et al.Analysis of quenching parameters in AISI 4340 steel by using design of experiments[J].Materials Research,2019,22(1):e20180315. [6] Zheng L,Zheng D,Zhao L,et al.Novel water-air circulation quenching process for AISI 4140 steel[J].Metals and Materials International,2013,19(6):1373-1376. [7] Saeidi N,Ekrami A.Microstructure-toughness relationship in AISI4340 steel[J].Defect and Diffusion Forum,2011,312-315:110-115. [8] 顾德骥,姚守堪.浅论国内超高强度钢的发展[J].机械工程材料,1979,3(5):74-88. [9] Youngblood J L,Raghavan M.Correlation of microstructure with mechanical properties of 300m steel[J].Metallurgical Transactions A,1977,8(9):1439-1448. [10] Li Y F,Cheng X,Liu D,et al.Influence of last stage heat treatment on microstructure and mechanical properties of laser additive manufactured AF1410 steel[J].Materials Science and Engineering A,2018,713:75-80. [11] Hemphill R M, Wert D E, Novotny P M,et al.High strength,high fracture toughness alloy:US5268044[P].1991-02-05. [12] 王志会,王华明,刘 栋.激光增材制造AF1410超高强度钢组织与力学性能研究[J].中国激光,2016,43(4):59-65. Wang Zhihui,Wang Huaming,Liu Dong.Microstructure and mechanical properties of AF1410 ultra-high strength steel using laser additive manufacture technique[J].Chinese Journal of Lasers,2016,43(4):59-65. [13] 姜 越,尹钟大,朱景川,等.马氏体时效不锈钢的发展现状[J].特殊钢,2003,24(3):1-5. Jiang Yue,Yin Zhongda,Zhu Jingchuan,et al.Development status of maraging stainless steel[J].Special Steel,2003,24(3):1-5. [14] Tharian K T,Sivakumar D,Ganesan R,et al.Development of new low nickel,cobalt free maraging steel[J].Materials Science and Technology,2013,7(12):1082-1088. [15] 何 毅,杨 柯,孔凡亚,等.超高强度18Ni无钻马氏体时效钢的力学性能[J].金属学报,2002,38(3):278-282. He Yi,Yang Ke,Kong Fanya,et al.Mechanical properties of ultra-high-strength 18Ni cobalt-free maraging steel[J].Acta Metallurgica Sinica,2002,38(3):278-282. [16] Jiang S H,Wang H,Wu Y,et al.Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J].Nature,2017,544(7651):460-464. [17] 谭超林,周克崧,马文有,等.激光增材制造成型马氏体时效钢研究进展[J].金属学报,2020,56(1):36-52. Tan Chaolin,Zhou Kesong,Ma Wenyou,et al.Research progress of laser additive manufacturing of maraging steels[J].Acta Metallurgica Sinica,2020,56(1):36-52. [18] Xiang S,Wang J P,Sun Y L,et al.Effect of ageing process on mechanical properties of martensite precipitation-hardening stainless steel[J].Advanced Materials Research,2010,146-147:382-385. [19] Chen L,Song R B,Yang F Q,et al.Torsion failure analysis of 0Cr17Ni7Al precipitation hardening stainless steel wire[J].Materials Science Forum,2016,850:66-71. [20] 李 楠,陈嘉砚,龙晋明.Custom465马氏体时效不锈钢的强韧化特征及工艺优化[J].物理测试,2005(6):7-9. Li Nan,Chen Jiayan,Long Jinming.Strengthening characteristic and optimization of heat treatment for Custom465 maraging stainless steel[J].Physics Examination and Testing,2005(6):7-9. [21] Kuehmann C.Computational design for ultra high-Strength alloy[J].Advanced Materials and Processes,2008(1):37-40. [22] Tian J L,Wang W,Shahzad Babar M,et al.A new maraging stainless steel with excellent strength-toughness-corrosion synergy[J].Materials,2017,10(11):1293. [23] Zackay V F,Parker E R.The changing role of metastable austenite in the design of alloys[J].Annual Review of Materials Science,1976,6(1):139-155. [24] Matsumura O,Sakuma Y,Takechi H.Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel[J].Transactions of the Iron and Steel Institute of Japan,1987,27(7):570-579. [25] El-Sherbiny A,El-Fawkhry Mohamed K,Shash Ahmed Y,et al.Replacement of silicon by aluminum with the aid of vanadium for galvanized TRIP steel[J].Journal of Materials Research and Technology,2020,9(3):3578-3589. [26] 胡建明,李 麟,黄 澍,等.贝氏体等温温度对980 MPa TRIP钢力学性能和显微组织的影响[J].上海金属,2011,33(3):14-18. Hu Jianming,Li Lin,Huang Shu,et al.Effect of isothermal bainite treatment on microstructure and mechanical properties of 980 MPa TRIP steel[J].Shanghai Metals,2011,33(3):14-18. [27] 田亚强,曹仲乾,潘红波,等.两相区温度对中锰钢IQ&P处理后组织和力学性能的影响[J].金属热处理,2020,45(7):37-41. Tian Yaqiang,Cao Zhongqian,Pan Hongbo,et al.Effect of intercritical temperature on microstructure and mechanical properties of medium manganese steel after IQ&P treatment[J].Heat Treatment of Metals,2020,45(7):37-41. [28] Du P J,Yang D P,Bai M K,et al.Austenite stabilization by two step partitioning of manganese and carbon in a Mn-TRIP steel[J].Materials Science and Technology,2019,35(17):2084-2091. [29] Graessel O,Frommeyer G,Derder C,et al.Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels[J].Journal de Physique IV (Proceedings),1997(C5):383-388. [30] Frommeyer G,Brüx U,Neumann P.Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J].ISIJ International,2003,43(3):438-446. [31] Grässel O,Krüger L,Frommeyer G,et al.High strength Fe-Mn-(Al,Si) TRIP/TWIP steels development-properties-application[J].International Journal of Plasticity,2000,16(10/11):1391-1409. [32] Dumay A A,Chateau J P A,Allain S B,et al.Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J].Materials Science and Engineering A,2008,483-484:184-187. [33] Idrissi H,Ryelandt L,Veron M,et al.Is there a relationship between the stacking fault character and the activated mode of plasticity of Fe-Mn-based austenitic steels[J].Scripta Materialia,2009,60(11):941-944. [34] 黎 倩,熊荣刚,陈佳荣,等.TWIP钢的显微组织与变形机制研究[J].材料热处理学报,2008,29(2):52-55. Li Qian,Xiong Ronggang,Chen Jiarong,et al.Microstructure and deformation mechanism of TWIP steels[J].Transactions of Materials and Heat Treatment,2008,29(2):52-55. [35] Grässel O,Krüger L,Frommeyer G.High strength Fe-Mn-(Al,Si) TRIP/TWIP steels development-properties-application[J].International Journal of Plasticity,2000,16(10/11):1391-1409. [36] Cao J L,Zhao A M,Liu J X,et al.Effect of Nb on microstructure and mechanical properties in non-magnetic high manganese steel[J].Journal of Iron and Steel Research International,2014,21(6):600-605. [37] Lehnhoff G R,Findley K O,De Cooman B C.The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel[J].Scripta Materialia,2014,92:19-22. [38] Gwon Hojun,Kim J H,Kim J K,et al.Role of grain size on deformation microstructures and stretch-flangeability of TWIP steel[J].Materials Science and Engineering A,2020,773:138861. [39] Speer J,Matlock D K,Cooman B C D,et al.Carbon partitioning into austenite after martensite transformation[J].Acta Materialia,2003,51(9):2611-2622. [40] Matlock D K,Brautigam V E,Speer J G.Application of the quenching and partitioning (Q&P) process to a medium-carbon,high-Si microalloyed bar steel[J].Materials Science Forum,2003(2):1089-1094. [41] 安柯宇,梁佳敏,幸非凡,等.第三代汽车用高强钢——Q&P钢的研究现状[J].金属热处理,2019,44(2):1-7. An Keyu,Liang Jiamin,Xing Feifan,et al.Research status of the 3rd generation advanced high strength steels for automobiles—Q&P steels[J].Heat Treatment of Metals,2019,44(2):1-7. [42] 余香芸,石增敏,池 波,等.热成形配分工艺对超高强钢组织和力学性能的影响[J].钢铁研究学报,2015,27(4):63-68. Yu Xiangyun,Shi Zengmin,Chi Bo,et al.Effects of hot formation and partitioning process on microstructure and mechanical properties of ultra-high strength steel[J].Journal of Iron and Steel Research,2015,27(4):63-68. [43] 陈梦园,刘 卓,吴 润,等.配分时间对Q&P钢组织及性能的影响[J].金属热处理,2020,45(9):62-65. Chen Mengyuan,Liu Zhuo,Wu Run,et al.Effect of partitioning time on microstructure and properties of Q&P steel[J].Heat Treatment of Metals,2020,45(9):62-65. [44] 李金鑫,黄兴民,张 雷,等.淬火配分处理对锻态Fe-0.2C-9Mn-3.5Al钢显微组织及力学行为的影响[J].金属热处理,2020,45(2):87-93. Li Jinxin,Huang Xingmin,Zhang Lei,et al.Influence of quenching and partitioning treatment on microstructure and mechanical behaviors of forged Fe-0.2C-9Mn-3.5Al steel[J].Heat Treatment of Metals,2020,45(2):87-93. [45] 徐祖耀.用于超高强度钢的淬火-碳分配-回火(沉淀)(Q-P-T)工艺[J].热处理,2008,23(2):1-5. Xu Zuyao.Quenching-partitioning-tempering(precipitation)(Q-P-T)process for ultra-high strength steel[J].Heat Treatment,2008,23(2):1-5. [46] Hsu T Y,Xu Z Y.Design of structure,composition and heat treatment process for high strength steel[J].Materials Science Forum,2007,561:2283-2286. [47] Han J,Lee Y K.The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels[J].Acta Materialia,2014,67:354-361. [48] 冯树明,万德成,王亚婷,等.Q&P处理低碳中锰钢的显微组织与力学性能[J].金属热处理,2020,45(4):69-74. Feng Shuming,Wan Decheng,Wang Yating,et al.Microstructure and mechanical properties of low carbon medium manganese steel treated by Q&P process[J].Heat Treatment of Metals,2020,45(4):69-74. |