[1]吴 凡. 超高临界压发电厂锅炉管用铁素体耐热钢的发展现状与研究前景[J]. 电力系统装备, 2019(24): 148-149. Wu Fan. Development status and research prospect of ferritic heat-resistant steel for boiler tubes in ultra-high critical pressure power plants[J]. Electric Power System Equipment, 2019(24): 148-149. [2]熊林敞, 田仲良. 超超临界汽轮机转子用耐热钢研究进展[J]. 上海金属, 2018, 40(1): 89-94. Xiong Linchang, Tian Zhongliang. Development of heat-resistant steels used for ultra-supercritical steam turbine rotor[J]. Shanghai Metals, 2018, 40(1): 89-94. [3]姬慧君, 丁 凯, 赵炳戈, 等. 改进型9Cr耐热钢高温长时时效组织演变研究[J]. 上海金属, 2018, 40(6): 34-38. Ji Huijun, Ding Kai, Zhao Bingge, et al. Investigation on the microstructure evolution of modified 9Cr heat-resistant steel after long-time aging at high temperature[J]. Shanghai Metals, 2018, 40(6): 34-38. [4]Verma A K, Hawk J A, Romanov V N, et al. Predictions of long-term creep life for the family of 9-12wt% Cr martensitic steels[J]. Journal of Alloys and Compounds, 2020, 815: 152417. [5]刘正东, 陈正宗, 何西扣, 等. 630~700 ℃超超临界燃煤电站耐热管及其制造技术进展[J]. 金属学报, 2020, 56(4): 539-548. Liu Zhengdong, Chen Zhengzong, He Xikou, et al. Systematical innovation of heat resistant materials used for 630-700 ℃ advanced ultra-supercritical (A-USC)fossil fired boilers[J]. Acta Metallurgica Sinica, 2020, 56(4): 539-548. [6]胡正飞, 杨振国. 高铬耐热钢的发展及其应用[J]. 钢铁研究学报, 2003, 15(3): 60-65. Hu Zhengfei, Yang Zhenguo. Development and application of high chromium heat-resistant steel[J]. Journal of Iron and Steel Research, 2003, 15(3): 60-65. [7]Xiao B, Xu L, Cayron C, et al. Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel[J]. Acta Materialia, 2020, 195(15): 199-208. [8]吕振家, 彭建强, 周立艳, 等. 汽轮机转子用9-12%Cr钢发展情况综述[J]. 大型铸锻件, 2019(2): 1-5. Lü Zhenjia, Peng Jianqiang, Zhou Liyan, et al. Development status summarization of 9-12% Cr steel used for steam turbine rotor[J]. Heavy Castings and Forgings, 2019(2): 1-5. [9]吴增强, 白 银, 马龙腾, 等. 650 ℃马氏体耐热钢研究及其进展[J]. 钢铁, 2015, 50(5): 1-6. Wu Zengqiang, Bai Yin, Ma Longteng, et al. Research and development of martensitic creep-resistant steels for 650 ℃[J]. Iron and Steel, 2015, 50(5): 1-6. [10]冯卫国. 700 ℃火电超超临界机组及阀门发展概况[J]. 化肥设计, 2019, 57(5): 5-9. Feng Weiguo. Development overview of 700 ℃ ultra-supercritical thermal power units and valves[J]. Chemical Fertilizer Design, 2019, 57(5): 5-9. [11]Swindeman R W, Santella M L, Maziasz P J, et al. Issues in replacing Cr-Mo steels and stainless steels with 9Cr-1Mo-V steel[J]. International Journal of Pressure Vessels & Piping, 2004, 81(6): 507-512. [12]Wang Y, Mayer K H, Scholz A, et al. Development of new 11%Cr heat resistant ferritic steels with enhanced creep resistance for steam power plants with operating steam temperatures up to 650 ℃[J]. Materials Science and Engineering: A, 2009, 510-511: 180-184. [13]朱 麟. 高铬耐热钢高温蠕变行为及寿命预测[D]. 西安: 西北大学, 2019. Zhu Lin. Creepbehavior and life prediction of high chromium heat resistant steel at elevated temperature[D]. Xi'an: Northwest University, 2019. [14]Pandey C, Mahapatra M M, Kumar P, et al. Some studies on P91 steel and their weldments[J]. Journal of Alloys and Compounds, 2018, 743(30): 332-364. [15]Smith A, Asadikiya M, Chen J, et al. The compositional optimization and secondary phases evaluation regarding the creep resistance in Grade 91 steel through the CALPHAD approach[J]. Computational Materials Science, 2020, 177: 109519. [16]Cipolla L, Danielsen H K, Venditti D, et al. Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel[J]. Acta Materialia, 2010, 58(2): 669-679. [17]Xu Yuantao, Zhang Xiying, Tian Yubo, et al. Study on the nucleation and growth of M23C6 carbides in a 10% Cr martensite ferritic steel after long-term aging[J]. Materials Characterization, 2016, 111: 122-127. [18]Onizawa T, Wakai T, Ando M, et al. Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel[J]. Nuclear Engineering and Design, 2008, 238(2): 408-416. [19]殷凤仕, 刘志良, 薛 冰, 等. 微量碳和氮对9%Cr耐热钢中第二相析出行为的影响[J]. 动力工程学报, 2010, 30(4): 258-262. Yin Fengshi, Liu Zhiliang, Xue Bing, et al. Effect of trace amounts of carbon and nitrogen on second phase precipitation of 9%Cr heat-resistant steels[J]. Journal of Chinese Society of Power Engineering, 2010, 30(4): 258-262. [20]本 刊. 钢中元素对钢铁性能的影响[J]. 新疆钢铁, 2018(1): 9+13+17+61. [21]Purmensky J, Foldyna V, Kubon Z. Creep resistance and structural stability of low-alloy CrMo and CrMoV steels[J]. Key Engineering Materials, 2000, 171-174: 419-426. [22]Pandey C, Giri A, Mahapatra M M. Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties[J]. Materials Science and Engineering: A, 2016, 664(10): 58-74. [23]侯树森, 郭贵中, 肖淼鑫, 等. 超超临界机组用P92工艺研究[J]. 热加工工艺, 2020(22): 138-140. Hou Shusen, Guo Guizhong, Xiao Miaoxin, et al. Study on heat treatment process of P92 ferrite heat-resistant steel for ultra supercritical units[J]. Hot Working Technology, 2020(22): 138-140. [24]王利伟, 龚志华, 杨 钢, 等. 热处理工艺对2Cr12NiMo1W1V叶片钢组织和性能的影响[J]. 钢铁, 2020, 55(7): 100-105. Wang Liwei, Gong Zhihua, Yang Gang, et al. Effect of heat treatment process on microstructure and property of 2Cr12NiMo1W1V steel for steam blade[J]. Iron and Steel, 2020, 55(7): 100-105. [25]张苏鹏, 王军丽, 章震威, 等. 等通道转角挤压制备超细晶材料的最新研究进展[J]. 材料热处理学报, 2020, 41(3): 1-14. Zhang Supeng, Wang Junli, Zhang Zhenwei, et al. Latest research progress in the preparation of ultra-fine grain materials by equal channel angular pressing[J]. Transactions of Materials and Heat Treatment, 2020, 41(3): 1-14. [26]Fan Z Q, Hao T, Zhao S X, et al. The microstructure and mechanical properties of T91 steel processed by ECAP at room temperature[J]. Journal of Nuclear Materials, 2013, 434(1-3): 417-421. [27]Song M, Zhu R, Foley D, et al. Enhancement of strength and ductility in ultrafine-grained T91 steel through thermomechanical treatments[J]. Journal of Materials Science, 2013, 48(21): 7360-7373. [28]李海昭, 梁 军, 林万鹏, 等. 正火温度对G115钢组织及室温强度的影响[J]. 材料热处理学报, 2018, 39(1): 71-76. Li Haizhao, Liang Jun, Lin Wanpeng, et al. Effect of normalizing temperature on microstructure and room temperature strength of G115 steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(1): 71-76. [29]齐向前. 基于ASME规范的G115钢焊条熔敷金属的焊接及热处理工艺[J]. 焊接技术, 2019, 48(12): 49-51. Qi Xiangqian. Welding and heat treatment process of deposited metal with G115 steel electrode based on ASME specification[J]. Welding Technology, 2019, 48(12): 49-51. [30]张建斌, 刘 帆. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 材料导报, 2018, 32(8): 1318-1322. Zhang Jianbin, Liu Fan. Effect of heat treatment on δ-ferrite and impact toughness of P91 heat-resistant steel[J]. Materials Reports, 2018, 32(8): 1318-1322. [31]龚志华, 姚 斌, 王利伟, 等. 热处理工艺对2Cr11Mo1VNbN耐热钢组织和性能的影响[J]. 钢铁, 2019, 54(6): 56-62. Gong Zhihua, Yao Bin, Wang Liwei, et al. Effect of heat treatment process on microstructure and property of 2Cr11Mo1VNbN heat resistant steel[J]. Iron and Steel, 2019, 54(6): 56-62. [32]曹登云, 董治中, 王旭明, 等. 热处理工艺对CB2耐热钢组织与性能的影响[J]. 金属热处理, 2019, 44(7): 75-77. Cao Dengyun, Dong Zhizhong, Wang Xuming, et al. Effect of heat treatment process on microstructure and properties of heat-resistant steel CB2[J]. Heat Treatment of Metals, 2019, 44(7): 75-77. [33]张晓翠, 刘传慧. 热处理对超超临界汽轮发电机组用X22耐热钢组织与性能的影响[J]. 热加工工艺, 2018(14): 158-160. Zhang Xiaocui, Liu Chuanhui. Effects of heat treatment on microstructure and properties of X22 heat resistant steel for ultrasupercritical generator set[J]. Hot Working Technology, 2018(14): 158-160. [34]Liu X, Fan P, Zhu L. Characterization of dislocation evolution during creep of 9Cr1Mo steel using internal friction measurement[J]. Materials Characterization, 2019, 150: 98-106. [35]Ghassemi-Armaki H, Chen R P, Maruyama K, et al. Static recovery of tempered lath martensite microstructures during long-term aging in 9-12% Cr heat resistant steels[J]. Materials Letters, 2009, 63(28): 2423-2425. [36]Tamura M, Abe F. Changes in estimated dislocation density during creep in martensitic heat-resistant steel[J]. Journal of Materials Science Research, 2015, 4(4): 48-69. [37]宋 旼, 肖代红, 黄伯云, 等. Al-Cu-Mg-Ag合金中半共格Ω析出相与位错的交互作用[J]. 北京工业大学学报, 2008, 34(10): 1093-1097. Song Min, Xiao Daihong, Huang Boyun, et al. Interaction between semi-coherent Ω precipitates and dislocations in Al-Cu-Mg-Ag alloy[J]. Journal of Bjing University of Technology, 2008, 34(10): 1093-1097. [38]Zhao J, Gong J, Saboo A, et al. Dislocation-based modeling of long-term creep behaviors of Grade 91 steels[J]. Acta Materialia, 2018, 149(1): 19-28. [39]Paul V T, Saroja S, Vijayalakshmi M. Microstructural stability of modified 9Cr-1Mo steel during long term exposures at elevated temperatures[J]. Journal of Nuclear Materials, 2008, 378(3): 273-281. [40]Xu Y, Zhang X, Tian Y, et al. Study on the nucleation and growth of M23C6 carbides in a 10% Cr martensite ferritic steel after long-term aging[J]. Materials Characterization, 2016, 111: 122-127. [41]Xu Y, Nie Y, Wang M, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging[J]. Acta Materialia, 2017, 131(1): 110-122. [42]余 涛, 刘新宝, 郝巧娥, 等. 高铬钢蠕变析出相变化分析概述[J]. 金属世界, 2016(2): 26-30. Yu Tao, Liu Xinbao, Hao Qiaoe, et al. Analysis overview of high-chromium steel creep precipitated phase change[J]. Metal World, 2016(2): 26-30. [43]Wang Z, Zhao H, Chen L, et al. Evolution and its stability of M23(C, N)6 carbonitride in martensite ferritic steel during long-term thermal aging[J]. Materials Characterization, 2019, 152: 36-43. [44]Aghajani A, Somsen Ch, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel[J]. Acta Materialia, 2009, 57(17): 5093-5106. [45]Armaki H G, Chen R, Maruyama K, et al. Creep behavior and degradation of subgrain structures pinned by nanoscale precipitates in strength-enhanced 5 to 12 Pct Cr ferritic steels[J]. Metallurgical Materials Transactions A, 2011, 42(10): 3084-3094. [46]Dudova N, Mishnev R, Kaibyshev R. Creep behavior of a 10%Cr heat-resistant martensitic steel with low nitrogen and high boron contents at 650 ℃[J]. Materials Science and Engineering A, 2019, 766(24): 138353. [47]Httestrand M, Andrén H O. Boron distribution in 9-12% chromium steels[J]. Materials Science Engineering A, 1999, 270(1): 33-37. [48]Gustafson A, Agren J. Possible effect of Co on coarsening of M23C6 carbide and Orowan stress in a 9% Cr steel[J]. ISIJ International, 2001, 41(4): 356-360. [49]Li Y, Du J, Li L, et al. Mechanical properties and phases evolution in T91 steel during long-term high-temperature exposure[J]. Engineering Failure Analysis, 2020, 111: 104451. [50]Abe F. Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels[J]. Materials Science and Engineering: A, 2001, 319-321: 770-773. [51]Ghosh S. The role of tungsten in the coarsening behaviour of M23C6 carbide in 9Cr-W steels at 600 ℃[J]. Journal of Materials Science, 2010, 45(7): 1823-1829. [52]Bhadeshia H K D H. Design of ferritic creep-resistant steels[J]. ISIJ International, 2001, 41(6): 626-640. [53]Yan P, Liu Z, Bao H, et al. Effect of microstructural evolution on high-temperature strength of 9Cr-3W-3Co martensitic heat resistant steel under different aging conditions[J]. Materials Science and Engineering A, 2013, 588: 22-28. [54]Bao Hansheng, Cheng Shichang, Liu Zhengdong, et al. Aging precipitates and strengthening mechanism of T122 boiler steel[J]. Journal of Iron and Steel Research(International), 2010, 17(2): 67-73. [55]石如星. 超超临界火电机组用P92钢组织性能优化研究[D]. 北京: 钢铁研究总院, 2011. Shi Ruxing. Investigation on optimization of microstructure and mechanical properties of P92 in ultra-supercritical units[D]. Beijing: Central Iron and Steel Research Institute, 2011. [56]Tkachev E, Belyakov A, Kaibyshev R. Creep strength breakdown and microstructure in a 9%Cr steel with high B and low N contents[J]. Materials Science and Engineering A, 2020, 772: 138821. [57]Zhang X Z, Wu X J, Liu R, et al. Influence of Laves phase on creep strength of modified 9Cr-1Mo steel[J]. Materials Science and Engineering A, 2017, 706: 279-286. [58]Isik M I, Kostka A, Eggeler G. On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels[J]. Acta Materialia, 2014, 81: 230-240. [59]Isik M I, Kostka A, Yardley V A, et al. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels[J]. Acta Materialia, 2015, 90(15): 94-104. [60]林 琳, 周荣灿, 郭 岩, 等. 应力与温度对P92钢中Laves相析出行为的影响[J]. 热力发电, 2012, 41(5): 56-60. Lin Lin, Zhou Rongcan, Guo Yan, et al. Ifluence of stress and temperature upon preciptiation behavior of Laves phase in P92 steel[J]. Thermal Power Generation, 2012, 41(5): 56-60. [61]Xu Y, Wang M, Wang Y, et al. Study on the nucleation and growth of Laves phase in a 10% Cr martensite ferritic steel after long-term aging[J]. Journal of Alloys and Compounds, 2015, 621(5): 93-98. [62]Ma H, He Y, Liu Y, et al. Effects of precipitation on the scale and grain growth in 9% Cr tempered martensite steel upon steam oxidation[J]. Materials Characterization, 2020, 167: 110479. [63]Kipelova A, Belyakov A, Kaibyshev R. Laves phase evolution in a modified P911 heat resistant steel during creep at 923 K[J]. Materials Science and Engineering A, 2012, 532: 71-77. [64]Ren J, Yu L, Liu Y, et al. Microstructure evolution and tensile properties of an Al added high-Cr ODS steel during thermal aging at 650 ℃[J]. Fusion Engineering and Design, 2020, 157: 111700. [65]Fedorova I, Belyakov A, Kozlov P, et al. Laves-phase precipitates in a low-carbon 9%Cr martensitic steel during aging and creep at 923 K[J]. Materials Science and Engineering A, 2014, 615: 153-163. [66]Mishnev R, Dudova N, Fedoseeva A, et al. Microstructural aspects of superior creep resistance of a 10%Cr martensitic steel[J]. Materials Science and Engineering A, 2016, 678: 178-189. [67]王志武, 宋 涛, 梅 伟, 等. 高Cr铁素体耐热钢中的Z相[J]. 金属热处理, 2012, 37(4): 1-5. Wang Zhiwu, Song Tao, Mei Wei, et al. Z phase in high Cr ferritic heat resistant steel[J]. Heat Treatment of Metals, 2012, 37(4): 1-5. [68]Danielsen H K, Hald J. Behaviour of Z phase in 9-12%Cr steels[J]. Energy Materials, 2006, 1(1): 49-57. [69]Sawada K, Kushima H, Kimura K, et al. Z-phase formation and its effect on long-term creep strength in 9-12%Cr creep resistant steels[J]. Transactions of the Indian Institute of Metals, 2010, 63(2/3): 117-122. [70]Abe F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants[J]. Science and Technology of Advanced Materials, 2008, 9(1): 013002. [71]Golpayegani A, Andrén H O, Danielsen H, et al. A study on Z-phase nucleation in martensitic chromium steels[J]. Materials Science and Engineering A, 2008, 489(1/2): 310-318. |