[1]Franz-Josef E. An overview of performance characteristics, experiences and trends of aerospace engine bearings technologies[J]. Chinese Journal of Aeronautics, 2007, 20(4): 378-384. [2]Wang L, Snidle R W, Gu L. Rolling contact silicon nitride bearing technology: A review of recent research[J]. Wear, 2000, 246: 159-173. [3]张 敏, 杨卯生, 李树索, 等. 高氮不锈轴承钢中的碳氮化物对力学性能的影响[J]. 钢铁研究学报, 2012, 24(5): 18-23. Zhang Min, Yang Maosheng, Li Shusuo, et al. Effect of the carbon nitrogen compounds on the mechanical properties of high nitrogen stainless bearing steel[J]. Journal of Iron and Steel Research, 2012, 24(5): 18-23. [4]郑 滔. 高氮不锈轴承钢的组织与性能研究[D]. 昆明: 昆明理工大学, 2013. [5]贾钰泽, 杨卯生, 周晓龙, 等. 回火温度对高氮轴承钢碳化物演变及硬度的影响[J]. 钢铁, 2015, 50(6): 81-86, 93. Jia Yuze, Yang Maosheng, Zhou Xiaolong, et al. Effect of tempering temperature on the evolution of carbide and hardness of high-nitrogen bearing steel[J]. Iron and Steel, 2015, 50(6): 81-86, 93. [6]徐海峰, 曹文全, 俞 峰, 等. 国内外高氮马氏体不锈轴承钢研究现状与发展[J]. 钢铁, 2017, 52(1): 53-63. Xu Haifeng, Cao Wenquan, Yu Feng, et al. Current research status and development of domestic and foreign high nitrogen martensitic stainless bearing steel[J]. Iron and Steel, 2017, 52(1): 53-63. [7]曹文全, 李绍昆, 雷建中, 等. 国内外轴承钢现状与发展趋势[N]. 世界金属导报, 2015, B12. [8]Gavriljuk V G, Shanina B D, Berns H. A physical concept for alloying steels with carbon+nitrogen[J]. Materials Science and Engineering, 2008, 481-482: 707-712. [9]林桐震, 郝雪玲, 杨红卫, 等. 高氮不锈钢Cronidur 30轴承套圈锻造工艺设计[J]. 轴承, 2019(4): 27-29. Lin Tongzhen, Hao Xueling, Yang Hongwei, et al. Design of forging process for bearing rings made of high nitrogen stainless steel Cronidur 30[J]. Bearing, 2019(4): 27-29. [10]Mehtedi M E, Ricci P, Drudi L, et al. Analysis of the effect of deep cryogenic treatment on the hardness and microstructure of X30 CrMoN 15 1 steel[J]. Materials and Design, 2012, 33(1): 136-144. [11]方志波, 张艳君, 闵永安, 等. SV30轴承钢奥氏体化时第二相的溶解及淬火相变特性[J]. 机械工程材料, 2018, 42(2): 13-17, 68. Fang Zhibo, Zhang Yanjun, Min Yong'an, et al. Dissolution of second phase during austenitization and characteristics of quenching phase transformation in SV30 bearing steel[J]. Materials for Mechanical Engineering, 2018, 42(2): 13-17, 68. [12]闵永安, 夏斯佳, 张艳君, 等. 冷处理对马氏体不锈钢组织和硬度的影响[J]. 金属热处理, 2017, 42(11): 103-107. Min Yong'an, Xia Sijia, Zhang Yanjun, et al. Effect of cryogenic treatment on microstructure and hardness of martensitic stainless steel[J]. Heat Treatment of Metals, 2017, 42(11): 103-107. [13]张艳君, 陈鹏飞, 方志波, 等. 高氮轴承钢SV30过冷奥氏体冷却相变研究[C]//第十一届中国钢铁年会论文集-轴承钢. 中国金属学会, 2017: 12-17. [14]冯 浩, 姜周华, 李花兵, 等. 淬火温度对30Cr15Mo1N高氮轴承钢组织和性能的影响[J]. 钢铁, 2017, 52(9): 85-93. Feng Hao, Jiang Zhouhua, Li Huabing, et al. Effect of quenching temperature on microstructure and mechanical properties of high nitrogen bearing steel 30Cr15Mo1N[J]. Iron and Steel, 2017, 52(9): 85-93. [15]陈 豪, 徐海峰, 周天鹏, 等. 淬火和低温处理对X30 CrMoN151组织性能影响[J]. 钢铁, 2019, 54(9): 85-93. Chen Hao, Xu Haifeng, Zhou Tianpeng, et al. Effect of quenching and low temperature treatment on microstructure and mechanical properties of X30 Cr15MoN151[J]. Iron and Steel, 2019, 54(9): 85-93. [16]王志楠, 梁 田, 张 龙, 等. 时效处理对20%冷变形15Cr-15Ni含Ti奥氏体不锈钢组织和650 ℃拉伸性能的影响[J]. 稀有金属材料与工程, 2018, 47(11): 3504-3511. Wang Zhinan, Liang Tian, Zhang Long, et al. Influence of aging treatment on the microstructure and high temperature mechanical properties for 15Cr-15Ni titanium austenitic stainless steel in 20% cold worked condition[J]. Rare Metal Materials and Engineering, 2018, 47(11): 3504-3511. [17]Silva R, Arana C, De S, et al. Microstructure and surface oxidation behavior of an austenitic Fe-Mn-Si-Cr-Ni-Co shape memory stainless steel at 800 ℃ in air[J]. Corrosion Science, 2019, 158: 108103.1-108103.10. [18]刘宝胜, 李国栋, 卫英慧. 奥氏体不锈钢中σ相析出及其对性能影响的研究进展[J]. 钢铁研究学报, 2014, 26(1): 1-6. Liu Baosheng, Li Guodong, Wei Yinghui. Review of σ phase precipitation and its influence on performance in austenitic stainless steel[J]. Journal of Iron and Steel Research, 2014, 26(1): 1-6. [19]Inácio L K D P, Wolf W, Leucas B, et al. Microtexture evolution of sigma phase in an aged fine-grained 2205 duplex stainless steel[J]. Materials Characterization, 2020, 171: 110802. |