[1] Batawi E, Morris D G, Morris M A. Effect of small alloying additions on behaviour of rapidly solidified Cu-Cr alloys[J]. Materials Science and Technology, 1990, 6(9): 892-899. [2] Vinogradov A, Ishida T, Kitagawa K, et al. Effect of strain path on structure and mechanical behavior of ultra-fine grain Cu-Cr alloy produced by equal-channel angular pressing[J]. Acta Materialia, 2005, 53(8): 2181-2192. [3] Correia J B, Davies H A, Sellars C M. Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys[J]. Acta Materialia, 1997, 45(1): 177-190. [4] Su J H, Dong Q M, Liu P, et al. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy[J]. Materials Science and Engineering A, 2005, 392(1/2): 422-426. [5] Batawi E, Biselli C, Gunther S, et al. Thermomechanical processing of spray-formed Cu-Cr-Zr alloy[J]. Scripta Metallurgica et Materialia, 1993, 29(6): 765-769. [6] Holzwarth U, Stamm H. The precipitation behaviour of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing[J]. Journal of Nuclear Materials, 2000, 279(1): 31-45. [7] 刘国辉, 赵四祥, 彭凌剑, 等. CuCrZr合金中沉淀相的控制[J]. 金属热处理, 2015, 40(4): 1-6. Liu Guohui, Zhao Sixiang, Peng Lingjian, et al. Control of precipitates in CuCrZr alloy[J]. Heat Treatment of Metals, 2015, 40(4): 1-6. [8] 石凤健, 王雷刚, 王海龙, 等. 等径角挤压工艺对固溶状态CuCrZr合金性能的影响[J]. 金属热处理, 2007, 32(1):81-83. Shi Fengjian, Wang Leigang, Wang Hailong, et al. Effect of equal-channel angular pressing on properties of CuCrZr alloy as solid solution[J]. Heat Treatment of Metals, 2007, 32(1):81-83. [9] Batra I S, Dey G K, Kulkarni U D, et al. Precipitation in a Cu-Cr-Zr alloy[J]. Materials Science and Engineering A, 2003, 356(1/2): 32-36. [10] Huang F, Ma J, Ning H, et al. Analysis of phases in a Cu-Cr-Zr alloy[J]. Scripta Materialia, 2003, 48(1): 97-102. [11] Huang F X, Yang H, Tang L W, et al. Analysis of as-cast microstructure in a Cu-Cr-Zr-Fe-Ti alloy[C]//Proceedings of the 7th National Conference on Chinese Functional Materials and Applications, 2010: 806-810. [12] Tang N Y, Taplin D, Dunlop G L. Precipitation and aging in high-conductivity Cu-Cr alloys with additions of zirconium and magnesium[J]. Metal Science Journal, 2013, 1(4): 270-275. [13] Mu S G, Guo F A, Tang Y Q, et al. Study on microstructure and properties of aged Cu-Cr-Zr-Mg-RE alloy[J]. Materials Science and Engineering A, 2008, 475(1/2): 235-240. [14] 刘 平, 康布熙, 曹兴国, 等. 快速凝固Cu-Cr合金时效析出的共格强化效应[J]. 金属学报, 1999, 35(6): 561-564. Liu Ping, Kang Buxi, Cao Xingguo, et al. Coherent strengthening of aging precipitation in rapidly solidified Cu-Cr alloy[J]. Acta Metallrugica Sinica, 1999, 35(6): 561-564. [15] Lei Jingguo, Liu Ping, Tian Baohong, et al. Loss in coherency and coarsening behavior of Cr precipitates in Cu-Ag-Cr[J]. Transactions of Nonferrous Metals Society of China, 2005(S3): 185-188. [16] 雷静果. 新型高强高导Cu-Ag-Cr合金的组织性能及时效动力学研究[D]. 西安: 西安理工大学, 2007. Lei Jingguo.Research on microstructures and properties and aging kinetics of new high strength and high conductivity Cu-Ag-Cr alloy[D]. Xi'an: Xi'an University of Technology, 2007. [17] Su J, Ping L, Li H, et al. Phase transformation in Cu-Cr-Zr-Mg alloy[J]. Materials Letters, 2007, 61(27): 4963-4966. [18] Badji R, Bouabdallah M, Bacroix B, et al. Effect of solution treatment temperature on the precipitation kinetic of σ-phase in 2205 duplex stainless steel welds[J]. Materials Science and Engineering A, 2008, 496(1/2): 447-454. [19] 陈 健, 刘雪飘, 梁 欢. 铜镍钴铍合金的时效相变动力学方程[J]. 机械工程材料, 2011, 35(1): 19-21. Chen Jian, Liu Xuepiao, Liang Huan. Aging transformation kinetic equation of CuNiCoBe alloy[J]. Materials for Mechanical Engineering, 2011, 35(1): 19-21. |