[1]尚丽梅, 王春旭, 韩 顺, 等. 基于摩擦-温度双修正的Maraging250钢热变形行为及热加工图[J]. 金属热处理, 2021, 46(5): 111-117. Shang Limei, Wang Chunxu, Han Shun, et al. Heat deformation behavior and hot working drawing of Maraging250 steel based on friction-temperature double correction[J]. Heat Treatment of Metals, 2021, 46(5): 111-117. [2]黎俊良, 邢 军, 葛章琦, 等. 新型低碳含铌热轧H型钢的热变形行为[J]. 金属热处理, 2021, 46(5): 118-126. Li Junliang, Xing Jun, Ge Zhangqi, et al. Hot deformation behavior of a new type of low carbon niobium-containing hot rolled H-beam[J]. Heat Treatment of Metals, 2021, 46(5): 118-126. [3]李 硕, 方光锦, 汪青芳, 等. 23MnNiMoCr54钢的热变形行为[J]. 金属热处理, 2021, 46(5): 127-132. Li Shuo, Fang Guangjin, Wang Qingfang, et al. Hot deformation behavior of 23MnNiMoCr54 steel[J]. Heat Treatment of Metals, 2021, 46(5): 127-132. [4]刘楚明, 刘子娟, 朱秀荣, 等. 镁及镁合金动态再结晶研究进展[J]. 中国有色金属学报, 2006(1): 1-12. Liu Chuming, Liu Zijuan, Zhu Xiurong, et al. Research and development progress of dynamic recrystallization in pure magnesium and its alloys[J]. The Chinese Journal of Nonferrous Metals, 2006(1): 1-12. [5]杨靖丞, 王立忠, 钟志平, 等. 基于动态再结晶37CrS4特种钢的流变应力预测模型[J]. 材料研究学报, 2021, 35(4): 284-292. Yang Jingcheng, Wang Lizhong, Zhong Zhiping, et al. Prediction model of flow stress based on dynamic recrystallization of 37CrS4 special steel[J]. Chinese Journal of Materials Research, 2021, 35(4): 284-292. [6]Bi Z, Zhang M, Dong J, et al. A new prediction model of steady state stress based on the influence of the chemical composition for nickel-base superalloys[J]. Materials Science and Engineering: A, 2010, 527(16/17): 4373-4382. [7]Poliak E I, Jonas J J. A one-parmenter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136. [8]Chen M S, Lin Y C, Ma X S. The kinetics of dynamic recrystallization of 42CrMo steel[J]. Materials Science and Engineering: A, 2012, 556: 260-266. [9]Wang J, Dong J, Zhang M, et al. Hot working characteristics of nickel-base superalloy 740H during compression[J]. Materials Science and Engineering: A, 2013, 566: 61-70. [10]Mandal S, Bhaduri A K, Sarma V S. Role of twinning on dynamic recrystallization and microstructure during moderate to high strain rate hot deformation of a Ti-modified austenitic stainless steel[J]. Metallurgical and Materials Transactions A, 2012, 43(6): 2056-2068. [11]Lin Y C, Chen M S, Zhong J. Effects of deformation temperatures on stress/strain distribution and microstructural evolution of deformed 42CrMo steel[J]. Materials & Design, 2009, 30(3): 908-913. [12]Wang J, Xiao H, Xie H, et al. Study on hot deformation behavior of carbon structural steel with flow stress[J]. Materials Science and Engineering: A, 2012, 539: 294-300. [13]Xu Y, Hu L, Sun Y. Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy[J]. Journal of Alloys and Compounds, 2013, 580: 262-269. [14]Quan G, Shi R, Jiang Z, et al. Modeling of dynamic recrystallization volume fraction evolution for AlCu4SiMg alloy and its application in FEM[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(6): 1138-1151. |