[1]Mao J, Chang K M, Yang W, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy Rene 88DT[J]. Materials Science and Engineering A, 2002, 332(1/2): 318-329. [2]Semiatin S L, Mahaffey D W, Levkulich N C, et al. The effect of cooling rate on high-temperature precipitation in a powder-metallurgy, gamma/gamma-prime nickel-base superalloy[J]. Metallurgical and Materials Transactions A, 2018, 49(12): 6265-6276. [3]付 锐, 冯 涤, 陈希春, 等. 电渣重熔连续定向凝固技术研究[J]. 钢铁研究学报, 2011, 23(S2): 1-4. Fu Rui, Feng Di, Chen Xichun, et al. Research of ESR-CDS technology[J]. Journal of Iron and Steel Research, 2011, 23(S2): 1-4. [4]付 锐, 陈希春, 任 昊, 等. 电渣重熔连续定向凝固Rene88DT合金的组织与热变形行为[J]. 航空材料学报, 2011, 31(3): 8-13. Fu Rui, Chen Xichun, Ren Hao, et al. Structure and hot deformation behavior of ESR-CDS René88DT[J]. Journal of Aeronautical Materials, 2011, 31(3): 8-13. [5]陈希春, 付 锐, 冯 涤, 等. 电渣重熔连续定向凝固René88DT镍基合金锭工艺参数的计算[J]. 特殊钢, 2011, 32(5): 31-34. Chen Xichun, Fu Rui, Feng Di, et al. Calculation on technological parameters of electroslag remelting continuous-directionally solidified René88DT nickel alloy ingot[J]. Special Steel, 2011, 32(5): 31-34. [6]占礼春, 迟宏宵, 马党参, 等. 电渣重熔连续定向凝固M2高速钢铸态组织的研究[J]. 材料工程, 2013(7): 29-34. Zhan Lichun, Chi Hongxiao, Ma Dangshen, et al. The as-cast microstructure of ESR-CDS M2 high speed steel[J]. Journal of Materials Engineering, 2013(7): 29-34. [7]陈希春, 任 昊, 付 锐, 等. 电渣重熔高温合金凝固组织控制得研究进展[J]. 特钢技术, 2011, 17(3): 1-4. Chen Xichun, Ren Hao, Fu Rui, et al. Recent development of solidified structure controlling of superalloy during ESR process[J]. Special Steel Technology, 2011, 17(3): 1-4. [8]柴国明, 陈希春, 郭汉杰, 等. N元素对FGH96高温合金析出相的影响[J]. 特种铸造及有色合金, 2011, 31(12): 1079-1083. Chai Guoming, Chen Xichun, Guo Hanjie, et al. Effect of N on precipitate phases in FGH96 superalloy[J]. Special Casting and Nonferrous Alloys, 2011, 31(12): 1079-1083. [9]李福林, 付 锐, 冯 涤, 等. 镍基变形高温合金CDS&W FGH96热变形行为研究[J]. 稀有金属, 2015, 39(3): 201-206. Li Fulin, Fu Rui, Feng Di, et al. Hot deformation characteristics of Ni-base superalloy CDS&W FGH96[J]. China Journal of Rare Metals, 2015, 39(3): 201-206. [10]Reed R C. The Superalloys: Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2006. [11]Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction[J]. Acta Materialia, 2004, 52(12): 3737-3744. [12]Semiatin S L, Kim S L, Zhang F, et al. An investigation of high-temperature precipitation in powder-metallurgy, gamma/gamma-prime nickel-base superalloys[J]. Metallurgical and Materials Transactions A, 2015, 46(4): 1715-1730. [13]Kozar R W, Suzuki A, Milligan W W, et al. Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys[J]. Metallurgical and Materials Transactions A, 2009, 40(7): 1588-1603. [14]Mao J, Chang K M, Yang W, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI[J]. Metallurgical and Materials Transactions A, 2001, 32(10): 2441-2452. [15]Sosa J M, Huber D E, Welk B, et al. Development and application of MIPARTM: A novel software package for two- and three-dimensional microstructural characterization[J]. Integrating Materials and Manufacturing Innovation, 2014, 3(1): 1-18. [16]Feng Y F, Zhou X M, Zou J W, et al. Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(4): 493-499. [17]Jian Mao. Gamma prime precipitation modeling and strength responses in powder metallurgy superalloys[D]. Morrgantown: West Virginia University, 2002. [18]田高峰, 贾成厂, 温 莹, 等. 粉末高温合金涡轮盘不同部位冷却γ′相的析出和强化[J]. 材料热处理学报, 2008, 29(3): 126-130. Tian Gaofeng, Jia Chengchang, Wen Ying, et al. Cooling precipitation and strengthening for different locations of a powder metallurgy nickel-base superalloy disk[J]. Transactions of Materials and Heat Treatment, 2008, 29(3): 126-130. [19]Tiley J, Viswanathan G B, Srinivasan R, et al. Coarsening kinetics of γ′ precipitates in the commercial nickel base Superalloy René 88 DT[J]. Acta Materialia, 2009, 57(8): 2538-2549. [20]Baldan A. Review progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories[J]. Journal of Materials Science, 2002, 37(11): 2171-2202. [21]Chen Y Q, Francis E, Robson J, et al. Compositional variations for small-scale gamma prime (γ′) precipitates formed at different cooling rates in an advanced Ni-based superalloy[J]. Acta Materialia, 2015, 85: 199-206. [22]Zhao G D, Yang G L, Liu F, et al. Transformation mechanism of (γ+γ′) and the effect of cooling rate on the final solidification of U720Li alloy[J]. Acta Metallurgica Sinica, 2017, 30(9): 1-8. [23]Singh A R P, Naga S, Wang J Y H, et al. Influence of cooling rate on the development of multiple generations of γ′ precipitates in a commercial nickel base superalloy[J]. Materials Characterization, 2011, 62(9): 878-886. |