[1]Batra I S, Dey G K, Kulkarni U D, et al. Microstructure and properties of a Cu-Cr-Zr alloy[J]. Journal of Nuclear Materials, 2001, 299(2): 91-100. [2]Chiang K T K, Wei R, Arps J H. Development of nanostructured Cu-Cr coatings for liquid rocket engine applications[C]// 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Paper No. AIAA, 2013: 2007-5583. [3]丁宗业, 贾淑果, 宁向梅, 等. 高强高导Cu-Cr-Zr合金时效性能[J]. 中国有色金属学报, 2017, 27(12): 2420-2425. Ding Zongye, Jia Shuguo, Ning Xiangmei, et al. Aging properties of high-strength and high-conductivity Cu-Cr-Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(12): 2420-2425. [4]侯东健, 武 磊, 高大伟, 等. 镁硅复合微合金化对高强高导铜铬锆合金时效过程的影响[J]. 金属热处理, 2016, 41(10): 102. Hou Dongjian, Wu Lei, Gao Dawei, et al. Effect of magnesium silicon composite microalloying on high strength and high conductivity Cu-Cr-Zr alloy aging process[J]. Heat Treatment of Metals, 2016, 41(10): 102. [5]Pang Y, Xia C, Wang M, et al. Effects of Zr and (Ni, Si) additions on properties and microstructure of Cu-Cr alloy[J]. Journal of Alloys and Compounds, 2014, 582: 786-792. [6]Xia C, Jia Y, Zhang W, et al. Study of deformation and aging behaviors of a hot rolled-quenched Cu-Cr-Zr-Mg-Si alloy during thermomechanical treatments[J]. Materials and Design, 2012, 39: 404-409. [7]Ji G, Qin F, Zhu L, et al. Dynamic recrystallization kinetics of Cu-0.36Cr-0.03Zr alloy during hot compression[J]. Journal of Materials Engineering and Performance, 2017, 26(6): 1-10. [8]Zhang Y, Chai Z, Volinsky A A, et al. Hot deformation characteristics and processing maps of the Cu-Cr-Zr-Ag alloy[J]. Journal of Materials Engineering and Performance, 2016, 25(3): 1191-1198. [9]Mirzadeh H, Najafizadeh A. Prediction of the critical conditions for initiation of dynamic recrystallization[J]. Materials and Design, 2010, 31(3): 1174-1179. [10]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136. [11]Han Y, Yan S, Yin B, et al. Effects of temperature and strain rate on the dynamic recrystallization of a medium-high-carbon high-silicon bainitic steel during hot deformation[J]. Vacuum, 2018, 148: 78-87. [12]蔡 薇, 高鹏哲, 陈辉明, 等. Cu-Cr-Zr-Ti合金高温热变形行为及热加工图[J]. 金属热处理, 2019, 44(8): 156-163. Cai Wei, Gao Pengzhe, Chen Huiming, et al. High temperature deformation behavior and hot processing map of Cu-Cr-Zr-Ti alloy[J]. Heat Treatment of Metals, 2019, 44(8): 156-163. [13]段园培, 黄仲佳, 余小鲁, 等. 基于摩擦修正的TB6合金流变应力行为研究及本构模型建立[J]. 稀有金属, 2014, 38(2): 202-209. Duan Yuanpei, Huang Zhongjia, Yu Xiaolu, et al. Flow stress behavior and constitutive model of as-cast TB6 titanium alloy based on friction correction[J]. Chinese Journal of Rare Metals, 2014, 38(2): 202-209. [14]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32. [15]Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hot-working conditions[J]. Metallurgical Reviews, 1969, 14(1): 1-24. [16]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138. [17]Mirzadeh H, Najafizadeh A. Prediction of the critical conditions for initiation of dynamic recrystallization[J]. Materials and Design, 2010, 31(3): 1174-1179. [18]Manonukul A, Dunne F P E. A model for the initiation of dynamic recrystallization in two-phase materials[J]. Philosophical Magazine A, 1999, 79(1): 113-132. [19]Jonas J J, Poliak E I. The critical strain for dynamic recrystallization in rolling mills[J]. Materials Science Forum, 2003, 426-432: 57-66. [20]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136. [21]Laasraoui A, Jonas J J. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transactions A, 1991, 22(7): 1545-1558. [22]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892. |