[1]冯仁辉, 潘春旭, 吴佑明, 等. 奥氏体不锈钢ROF内罩的失效机理分析[J]. 机械工程材料, 2000, 24(2): 45-47. Feng Renhui, Pan Chunxu, Wu Youming, et al. Failure mechanism of the austenitic stainless steel ROF internal cover[J]. Materials for Mechanical Engineering, 2000, 24(2): 45-47. [2]冯仁辉, 潘春旭, 杨世柏, 等. YUS701奥氏体不锈钢ROF内罩的脆断特征及脆化机理[J]. 武汉交通科技大学学报, 2000(6): 622-626. Feng Renhui, Pan Chunxu, Yang Shibai, et al. Brittleness mechanism and fracture characteristics of YUS701 austenitic stainless steel ROF internal cover[J]. Journal of Wuhan Transportation University, 2000(6): 622-626. [3]孙长庆. 稀土元素微合金化耐热不锈钢的开发与应用[J]. 金属热处理, 2016, 41(1): 126-129. Sun Changqing. Development and application of heat resistance stainless steel micro alloying with rare earth elements[J]. Heat Treatment of Metals, 2016, 41(1): 126-129. [4]孙玉福, 邓 想, 石广新. ZG30Cr30Ni8Si2NRE耐热钢的抗氧化性研究[J]. 热加工工艺, 2005(3): 19-21. Sun Yufu, Deng Xiang, Shi Guangxin. Study on oxidation resistance of ZG30Cr30Ni8Si2NRE heat-resistant steel[J]. Hot Working Technology, 2005(3): 19-21. [5]俞茂德, 宋诚一. 铈对奥氏体耐热钢高温氧化腐蚀性能的影响[J]. 中国稀土学报, 1986(3): 39-44. Yu Maode, Song Chengyi. Influence of cerium addition on high temperature oxidation property of austenitic stainless steel[J]. Journal of the Chinese Society of Rare Earths, 1986(3): 39-44. [6]Liu Tianlong, Zheng Kaihong, Wang Juan, et al. Effect of Ce on oxidation behaviour and microstructure evolution of a nickel-saving austenitic heat-resistant cast steel[J]. Corrosion Science, 2020, 166: 108423. [7]杨 珍, 鲁金涛, 赵新宝, 等. 稀土元素对合金高温氧化的影响[J]. 中国稀土学报, 2014, 32(6): 641-649. Yang Zhen, Lu Jintao, Zhao Xinbao, et al. Effect of rare earth elements on high temperature oxidation of metals[J]. Journal of the Chinese Society of Rare Earths, 2014, 32(6): 641-649. [8]Whittle D P, Stringer J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions[J]. Philosophical Transactions of the Royal Society A, 1980, 295(1413): 309-329. [9]Seo H S, Jin G X, Jun J H, et al. Effect of reactive elements on oxidation behaviour of Fe-22Cr-0. 5Mn ferritic stainless steel for a solid oxide fuel cell interconnect[J]. Journal of Power Sources, 2008, 178(1): 1-8. [10]Hayashi A, Hiraide N, Inoue Y. Spallation behavior of oxide scale on stainless steels[J]. Oxidation of Metals, 2016, 85(1/2): 87-101. [11]Howes V R. Metal-oxide interface morphology for a range of Fe-Cr alloys[J]. Pergamon, 1970, 10(2): 99-103. [12]Zheng Jianshu, Hou Xinmei, Wang Xiangbin, et al. Isothermal oxidation mechanism of Nb-Ti-V-Al-Zr alloy at 700-1200 ℃: Diffusion and interface reaction[J]. Corrosion Science, 2015, 96(7): 186-195. [13]王守仁, 张景春, 王砚军. 高温合金中Cr2O3氧化膜与Al2O3氧化膜的比较[J]. 山东建材, 2002, 22(1): 35-36. [14]Liang Z Y, Zhao Q X, Singh P M, et al. Field studies of steam oxidation behavior of austenitic heat-resistant steel 10Cr18Ni9Cu3NbN[J]. Engineering Failure Analysis, 2015, 53: 132-137. [15]Alia F F, Kurniawan T, Asmara Y P, et al. High temperature oxidation in boiler environment of chromized steel[J]. IOP Conference Series: Materials Science and Engineering, 2017, 257(1): 012086. [16]Yan J, Gao Y, Long L, et al. Effect of yttrium on the cyclic oxidation behavior of HP40 heat-resistant steel at 1373 K[J]. Corrosion Science, 2011, 53(1): 329-337. [17]Hayashi A, Hiraide N, Inoue Y. Spallation behavior of oxide scale on stainless steels[J]. Oxidation of Metals, 2016, 85(1/2): 87-101. [18]Zou D, Zhou Y, Zhang W, et al. High temperature oxidation behavior of a high Al-containing ferritic heat-resistant stainless steel[J]. Materials Characterization, 2018, 136: 435-443. |