[1]周海涛, 钟建伟, 周 啸, 等. 多级形变时效对Cu-Cr-Zr合金组织和性能的影响[J]. 材料热处理学报, 2009, 30(3): 141-145. Zhou Haitao, Zhong Jianwei, Zhou Xiao, et al. Effects of multi-step thermomechanical treatments on microstructure and properties of Cu-Cr-Zr alloy[J]. Transactions of Materials and Heat Treatment, 2009, 30(3): 141-145. [2]占国星, 李明茂. 高强高导Cu-Cr-Zr系合金的研究与应用进展[J]. 有色金属科学与工程, 2012(1): 13-17. Zhan Guoxing, Li Mingmao. Research and application progress of high-strength and high-conductivity Cu-Cr-Zr alloys[J]. Nonferrous Metals Science and Engineering, 2012(1): 13-17. [3]丰振军, 杜忠泽, 王庆娟. 高强高导Cu-Cr-Zr系合金的研究进展[J]. 热加工工艺, 2008, 37(8): 86-89. Feng Zhenjun, Du Zhongze, Wang Qinjuan. Research progress of high-strength and high-conductivity Cu-Cr-Zr system alloy[J]. Hot Working Technology, 2008, 37(8): 86-89. [4]曹 军, 郑 磊. 高强高导铜合金的强化方法和研究热点[J]. 铸造技术, 2018, 39(7): 1637-1642. Cao Jun, Zheng Lei. Strengthening method and research hotspots of high strength and high conductivity copper alloy[J]. Foundry Technology, 2018, 39(7): 1637-1642. [5]周 倩. 时效及塑性变形对Cu-Cr-Zr合金组织性能的影响[D]. 焦作: 河南理工大学, 2009. Zhou Qian. Effect of aging and cold deformation on microstructures and properties of Cu-Cr-Zr alloy[D]. Jiaozuo: Henan University of Technology, 2009. [6]刘海斌, 郑月红, 喇培清, 等. 轧制与时效处理对Cu-Cr-Zr合金组织和性能的影响[J]. 中国有色金属学报, 2020, 30(9): 91-99. Liu Haibin, Zheng Yuehong, La Peiqing, et al. Effect of rolling and aging treatment on microstructure and properties for Cu-Cr-Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(9): 91-99. [7]陶业卿, 刘 平, 陈小红, 等. 非真空熔炼Cu-Cr-Zr合金的性能研究[J]. 铸造, 2010, 59(10): 1020-1023. Tao Yeqing, Liu Ping, Chen Xiaohong, et al. Research on non-vacuum melting of Cu-Cr-Zr alloy[J]. Foundry, 2010, 59(10): 1020-1023. [8]任香玉, 高 平, 郭伟沯, 等. 热处理对Cu-Cr-Zr合金抗拉强度和电导率的影响[J]. 铸造技术, 2019, 40(6): 94-96, 104. Ren Xiangyu, Gao Ping, Guo Weiza, et al. Effects of heat treatment on tensile strength and conductivity of Cu-Cr-Zr alloy doped with lanthanum and yttrium[J]. Foundry Technology, 2019, 40(6): 94-96, 104. [9]Jha K, Neogy S, Kumar S, et al. Correlation between microstructure and mechanical properties in the age-hardenable Cu-Cr-Zr alloy[J]. Journal of Nuclear Materials, 2021, 546(6): 152775. [10]周 莎, 王快社, 王 文, 等. Cu-Cr-Zr合金搅拌摩擦焊接接头的组织和力学性能[J]. 金属热处理, 2020, 45(3): 40-46. Zhou Sha, Wang Kuaishe, Wang Wen, et al. Microstructure and mechanical properties of friction stir welding joint of Cu-Cr-Zr alloy[J]. Heat Treatment of Metals, 2020, 45(3): 40-46. [11]Meng A, Nie J, Wei K, et al. Optimization of strength, ductility and electrical conductivity of a Cu-Cr-Zr alloy by cold rolling and aging treatment[J]. Vacuum, 2019, 167: 329-335. [12]李应举, 王 聪, 张奎良, 等. 铸态Cu-Cr-Zr合金的高温热变形及再结晶行为[J]. 金属热处理, 2017, 42(6): 43-47. Li Yingju, Wang Chong, Zhang Kuiliang, et al. Hot deformation and recrystallization behaviors for as-cast Cu-Cr-Zr alloy[J]. Heat Treatment of Metals, 2017, 42(6): 43-47. |