[1]蒋 昱, 曾 攀, 娄路亮. 26Cr2Ni4MoV钢淬火过程的三场耦合数值模拟[J]. 哈尔滨工业大学学报, 2002, 34(3): 302-307. Jiang Yu, Zeng Pan, Lou Luliang. Numerical simulation of quenching process of steel 26Cr2Ni4MoV with thermo-mechano-metallurgical coupling[J]. Journal of Harbin Institute of Technology, 2002, 34(3): 302-307. [2]孔德武, 吕 昆, 黄群峰, 等. 分级淬火过程中42CrMo钢齿轮轮齿组织分布的数值模拟[J]. 机械工程材料, 2018, 42(8): 72-77. Kong Dewu, Lü Kun, Huang Qunfeng, et al. Numerical simulation of microstructure distribution in tooth of 42CrMo steel gear during step quenching[J]. Materials for Mechanical Engineering, 2018, 42(8): 72-77. [3]张清东, 林 潇, 曹 强, 等. 冷轧高强钢板淬火过程板形瓢曲缺陷演变规律研究[J]. 金属学报, 2017, 53(4): 385-396. Zhang Qingdong, Lin Xiao, Cao Qiang, et al. Flatness defect evolution of cold-rolled high strength steel strip during quenching process[J]. Acta Metallurgica Sinica, 2017, 53(4): 385-396. [4]刘 杰, 李萌蘖, 李绍宏, 等. 42CrMo钢船用曲拐加热和淬火过程数值模拟[J]. 金属热处理, 2019, 44 (11): 188-195. Liu Jie, Li Mengnie, Li Shaohong, et al. Numerical simulation of heating and quenching process of 42CrMo steel crankshaft[J]. Heat Treatment of Metals, 2019, 44(11): 188-195. [5]Wu K, He Z, Dong Z, et al. Numerical simulation of the temperature field of cold metal transfer welding pool[J]. Mechanika, 2016, 22(4): 285-290. [6]Imir C, Gür C H. A FEM based framework for simulation of thermal treatments: Application to steel quenching[J]. Computational Materials Science, 2008, 44(2): 588-600. [7]Tong D M, Gu J F, Yang F. Numerical simulation on induction heat treatment process of a shaft part: Involving induction hardening and tempering[J]. Journal of Materials Processing Technology, 2018, 262: 277-289. [8]孙晓明, 燕 艳, 杜晓钟, 等. 整体辗钢车轮淬火工艺的数值模拟[J]. 金属热处理, 2020, 45(10): 218-224. Sun Xiaoming, Yan Yan, Du Xiaozhong, et al. Numerical simulation of quenching process of integral steel rolling wheel[J]. Heat Treatment of Metals, 2020, 45(10), 218-224. [9]Simsir C, Gur C H. 3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution[J]. Journal of Materials Processing Technology, 2008, 207(1): 211-221. [10]Lingamanaik S N, Chen B K. Prediction of residual stresses in low carbon bainitic-martensitic railway wheels using heat transfer coefficients derived from quenching experiments[J]. Computational Materials Science, 2013, 77(3): 153-160. [11]Lingamanaik S N, Chen B K. Microstructural and thermo-mechanical analysis of quench cracking during the production of bainitic martensitic railway wheels[J]. Engineering Failure Analysis, 2014, 40: 25-32. [12]Lingamanaik S N, Chen B K. Thermo-mechanical modelling of residual stresses induced by martensitic phase transformation and cooling during quenching of railway wheels[J]. Journal of Materials Processing Technology, 2011, 211(9): 1547-1552. [13]丁凤娟, 贾向东, 洪腾蛟, 等. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115, 8120. Ding Fengjuan, Jia Xiangdong, Hong Tengjiao, et al. Influence of different heat treatment processes on plasticity and hardness of 6061 aluminum alloy[J]. Materials Reports, 2021, 35(8): 8108-8115, 8120. [14]Carlone P, Palazzo G S, Pasquino R. Finite element analysis of the steel quenching process: Temperature field and solid-solid phase change[J]. Computers and Mathematics with Applications, 2010, 59(1): 585-594. [15]Smoljan B. Prediction of mechanical properties and microstructure distribution of quenched and tempered steel shaft[J]. Journal of Materials Processing Technology, 2006, 175(1): 393-397. [16]刘 玉, 秦盛伟, 左训伟, 等. 全淬透圆柱件淬火应力的有限元模拟及试验验证[J]. 金属学报, 2017, 53(6): 733-742. Liu Yu, Qin Shengwei, Zuo Xunwei, et al. Finite element simulation and experimental verification of quenching stress in fully through-hardened cylinders[J]. Acta Metallurgica Sinica, 2017, 53(6): 733-742. [17]乔志霞. 连续冷却30CrNi3MoV超高强钢固态相变行为[D]. 天津: 天津大学, 2010. Qiao Zhixia. Solid phase transformation behavior of continuous cooling 30CrNi3MoV ultra-high strength steel[D]. Tianjin: Tianjin University, 2010. [18]钟流发, 刘祚时, 高秀琴, 等. 基于JMatPro与ANSYS联合仿真的变速器齿轮轴选材和热处理工艺改进设计[J]. 机械设计与研究, 2020, 36(5): 84-88. Zhong Liufa, Liu Zuoshi, Gao Xiuqin, et al. Material selection and heat treatment process improvement design of transmission gear shaft based on joint simulation of JMatPro and ANSYS[J]. Machine Design and Research, 2020, 36(5): 84-88. [19]乔志霞, 刘永长, 严泽生, 等. 30CrNi3MoV低合金超高强钢中的马氏体相变[J]. 材料科学与工艺, 2012, 20(5): 138-142. Qiao Zhixia, Liu Yongchang, Yan Zesheng, et al. Martensitic transformation in the 30CrNi3MoV low-alloy ultra-high strength steel[J]. Materials Science and Technology, 2012, 20(5): 138-142. |