[1]Bennetts I D, Moinuddin K A M, Goh C C, et al. Testing and factors relevant to the evaluation of the structural adequacy of steel members within fire-resistant elevator shafts[J]. Fire Safety Journal, 2005, 40(8): 698-727. [2]Kumar W, Sharma U K, Shome M. Mechanical properties of conventional structural steel and fire-resistant steel at elevated temperatures[J]. Journal of Constructional Steel Research, 2021, 181: 106615. [3]刘程鹏, 牟洪仲. 高层建筑用耐火钢的组织与性能[J]. 金属热处理, 2014, 39(5): 94-97. Liu Chengpeng, Mou Hongzhong. Microstructure and properties of fire-resistant steel for high rise building[J]. Heat Treatment of Metals, 2014, 39(5): 94-97. [4]Wan Rongchun, Sun Feng, Zhang Lanting, et al. Development and study of high-strength low-Mo fire-resistant steel[J]. Materials and Design, 2012, 36: 227-232. [5]陈 晓, 刘继雄, 董汉雄, 等. 大线能量焊接耐火耐候建筑用钢的研制及应用[J]. 中国有色金属学报, 2004, 14(S1): 224-230. Chen Xiao, Liu Jixiong, Dong Hanxiong, et al. Development of fire-resistant and weathering construction steel weldable with high heat input and its typical use[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(S1): 224-230. [6]李 丽, 吴年春, 费 亮, 等. 智能型耐火钢焊接热影响区高温拉伸性能研究[J]. 电焊机, 2015, 45(11): 67-72. Li Li, Wu Nianchun, Fei Liang, et al. Study on high temperature tensile strength of heat-affected zone in welding of intelligent fire-resistant steel[J]. Electric Welding Machine, 2015, 45(11): 67-72. [7]王道美, 邓 伟, 崔 强. 建筑用耐火钢的研究现状与发展趋势[J]. 山东冶金, 2014, 36(5): 5-8. Wang Daomei, Deng Wei, Cui Qiang. Research situation and development trend of fire-resistant steel for building structure[J]. Shangdong Metallurgy, 2014, 36(5): 5-8. [8]王 鑫, 李昭东, 张 可, 等. 多元微合金化耐火钢研究进展[J]. 钢结构, 2021, 36(3): 1-12. Wang Xin, Li Zhaodong, Zhang Ke, et al. Research progress on multi-microalloyed fire-resistant steel[J]. Steel Construction, 2021, 36(3): 1-12. [9]陆恒昌, 麻永林, 王 权, 等. 高精度SH-CCT曲线绘制方法探索[J]. 电焊机, 2013, 43(11): 139-143. Lu Hengchang, Ma Yonglin, Wang Quan, et al. Study of methods for drawing high-quality SH-CCT curves[J]. Electric Welding Machine, 2013, 43(11): 139-143. [10]覃展鹏, 王红鸿, 任晓辉, 等. 耐火钢Q420FRE的SH-CCT曲线及相变动力学研究[J]. 武汉科技大学学报, 2017, 40(2): 88-94. Qin Zhanpeng, Wang Honghong, Ren Xiaohui, et al. SH-CCT curves and phase transformation kinetics of fire-resistant steel Q420FER[J]. Journal of Wuhan University of Science and Technology, 2017, 40(2): 88-94. [11]Qin Zhanpeng, Wang Honghong, Tong Zhi, et al. Variation in morphology and kinetics of granular bainite with welding thermal cycles in high-Nb fire-resistant steel: Experiments and theoretical calculations[J]. Journal of Materials Engineering and Performance, 2019, 28: 321-329. [12]Bansal G K, Srivastava V C, Chowdhury S G. Role of solute Nb in altering phase transformations during continuous cooling of a low-carbon steel[J]. Materials Science and Engineering A, 2019, 767: 138416. [13]Khare S, Lee K, Bhadeshia H K. Relative effects of Mo and B on ferrite and bainite kinetics in strong steels[J]. International Journal of Materials Research, 2009, 100(11): 1513-1520. [14]Wan Rongchun, Sun Feng, Zhang Lanting, et al. Effects of Mo on high-temperature strength of fire-resistant steel[J]. Materials and Design, 2012, 35: 335-341. [15]Long X Y, Zhang F C, Zhang C Y. Effect of Mn content on low-cycle fatigue behaviors of low-carbon bainitic steel[J]. Materials Science and Engineering A, 2017, 697: 111-118. [16]万荣春, 孙 锋, 付立铭, 等. Nb对Q345低Mo耐火钢CCT曲线的影响[J]. 金属热处理, 2021, 46(2): 25-29. Wang Rongchun, Sun Feng, Fu Liming, et al. Effect of Nb on CCT curves of Q345 low-Mo fire-resistant steel[J]. Heat Treatment of Metals, 2021, 46(2): 25-29. [17]Kong Junhua, Zhen Lin, Guo Bin, et al. Influence of Mo content on microstructure and mechanical properties of high strength pipeline steel[J]. Materials and Design, 2004, 25(8): 723-728. [18]Assefpour-Dezfuly M, Hugaas B A, Brownrigg A. Fire resistant high-strength low-alloy steel[J]. Materials Science and Technology, 1990, 6(12): 1210-1214. [19]张文钺. 焊接冶金学[M]. 北京: 机械工业出版社, 1996. |