[1]Hernández-Escobar D, Champagne S, Yilmazer H, et al. Current status and perspectives of zinc-based absorbable alloys for biomedical applications [J]. Acta Biomaterialia, 2019, 97: 1-22. [2]田亚强, 赵冠璋, 刘 芸, 等. 生物可降解医用镁合金体内外降解行为研究进展 [J]. 材料工程, 2021, 49(5): 24-37. Tian Yaqiang, Zhao Guangzhang, Liu Yun, et al. Research progress in degradation behavior of biodegradable medical Mg-based alloy in vivo and in vitro[J]. Journal of Materials Engineering, 2021, 49(5): 24-37. [3]郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展 [J]. 金属学报, 2017, 53(10): 1227-1237. Zheng Yufeng, Yang Hongtao. Research progress in biodegradable metals for stent application [J]. Acta Metallurgica Sinica, 2017, 53(10): (7)1227-1237. [4]许恒源, 甄 睿, 毛忠峰, 等. 热处理对挤压态Mg-6Gd-5Y-1Zn合金组织与性能的影响 [J]. 金属热处理, 2020, 45(8): 161-165. Xu Hengyuan, Zhen Rui, Mao Zhongfeng, et al. Effect of heat treatment on microstructure and properties of as-extruded Mg-6Gd-5Y-1Zn alloy [J]. Heat Treatment of Metals, 2020, 45(8): 161-165. [5]Han H S, Loffredo S, Jun I, et al. Current status and outlook on the clinical translation of biodegradable metals [J]. Materials Today, 2019, 23: 57-71. [6]Li G N, Yang H T, Zheng Y F, et al. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility [J]. Acta Biomaterialia, 2019, 97: 23-45. [7]Yao C Z, Wang Z C, Tay S L, et al. Effects of Mg on microstructure and corrosion properties of Zn-Mg alloy [J]. Journal of Alloys and Compounds, 2014, 602: 101-107. [8]Pospisilova I, Vojtech D. Zinc alloys for biodegradable medical implants [J]. Materials Science Forum, 2014, 782: 457-460. [9]Prosek T, Nazarov A, Bexell U, et al. Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions [J]. Corrosion Science, 2008, 50(8): 2216-2231. [10]Janbozorgi M, Taheri K K, Taheri A K. Microstructural evolution, mechanical properties, and corrosion resistance of a heat-treated Mg alloy for the biomedical application [J]. Journal of Magnesium and Alloys, 2019, 7(1): 80-89. [11]黄元春, 谭维杨, 张传超, 等. 时效处理对新型Al-5.6Zn-1.6Mg-0.15Zr合金显微组织及耐腐蚀性能的影响 [J]. 金属热处理, 2021, 46(1): 161-166. Huang Yuanchun, Tan Weiyang, Zhang Chuanchao, et al. Effect of aging treatment on microstructure and corrosion resistance of new Al-5.6Zn-1.6Mg-0.15Zr alloy [J]. Heat Treatment of Metals, 2021, 46(1): 161-166. [12]Pola A, Tocci M, Goodwin F E. Review of microstructures and properties of zinc alloys [J]. Metals, 2020, 10(2): 253. [13]牛振国, 郭浦山, 叶 宏, 等. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353. Niu Zhenguo, Guo Pushan, Ye Hong, et al. Microstructure evolution and corrosion behavior of degradable Zn-7Mg alloy after heat treatment[J]. Journal of Chinese Society for Corrosion and Protection, 2017, 37(4): 347-353. [14]Vojtech D, Kubasek J, Serak J, et al. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation [J]. Acta Biomaterialia, 2011, 7(9): 3515-3522. [15]李伟健. 医用可降解多孔锌镁合金的制备及性能研究 [D]. 太原: 太原理工大学, 2019. [16]汪 磊. 新型Zn-Mg-Zr三元合金可降解生物材料的研究 [D]. 南京: 南京航空航天大学, 2018. [17]Mrni N S, Dambatta M S, Yeap S K, et al. Cytotoxicity evaluation of biodegradable Zn-3Mg alloy toward normal human osteoblast cells [J]. Materials Science and Engineering C, 2015, 49: 560-566. [18]Törne K B, Khan F A, Örnberg A, et al. Zn-Mg and Zn-Ag degradation mechanism under biologically relevant conditions [J]. Surface Innovations, 2017, 6(1/2): 81-92. |