[1]Qin W J, Dong C, Li X. Assessment ofbending fatigue strength of crankshaft sections with consideration of quenching residual stress[J]. Journal of Materials Engineering and Performance, 2016, 25(3): 938-947. [2]陈 浩, 秦训鹏, 汪 舟, 等. 三维点式感应淬火电磁热耦合场数值模拟[J]. 中国表面工程, 2013, 26(1): 79-85. Chen Hao, Qin Xunpeng, Wang Zhou, et al. Finite element analysis of coupled electromagnetic thermal field for 3D spot induction hardening[J]. China Surface Engineering, 2013, 26(1): 79-85. [3]张沈洁, 李瑞卿, 孔春花, 等. 42CrMo钢驱动轮轴的感应热处理[J]. 金属热处理, 2016, 41(1): 43-47. Zhang Shenjie, Li Ruiqing, Kong Chunhua, et al. Induction hardening of 42CrMo steel driving axle[J]. Heat Treatment of Metals, 2016, 41(1): 43-47. [4]Gao K, Qin X, Wang Z, et al. Effect of spot continual induction hardening on the microstructure of steels: Comparison between AISI 1045 and 5140 steels[J]. Materials Science and Engineering A, 2016, 651: 535-547. [5]Kim M, Shin J, Choi Y, et al. Improvement of mechanical properties of spheroidized 1045 steel by induction heat treatment[J]. Metallurgical and Materials Transactions A, 2016, 47(4): 1761-1769. [6]梁 耀, 于晓华, 种晓宇, 等. 淬火温度对轧辊用高硼铁基合金组织和力学性能的影响[J]. 金属热处理, 2020, 45(8): 86-91. Liang Yao, Yu Xiaohua, Chong Xiaoyu, et al. Effect of quenching temperature on microstructure and mechanical properties of high-boron Fe-based alloy for roll[J]. Heat Treatment of Metals, 2020, 45(8): 86-91. [7]Lin C. Corrosion resistance and mechanical property enhancement of SPCC steel using an induction heat treatment[J]. International Journal of Electrochemical Science, 2017, 12(9): 7965-7976. [8]周 磊, 李启鹏, 薛德志, 等. LY2铝合金的激光冲击强化区硬度和残余应力测试分析[J]. 航空精密制造技术, 2010, 46(1): 43-45. Zhou Lei, Li Qipeng, Xue Dezhi, et al. Measurement and analysis of hardness and residual stress for laser shock processing field of aluminum alloy LY2[J]. Aviation Precision Manufacturing Technology, 2010, 46(1): 43-45. [9]孙 渊, 张 栋, 午丽娟, 等. 材料残余应力对硬度测试影响程度的分析[J]. 华东理工大学学报(自然科学版), 2012, 38(5): 652-656. Sun Yuan, Zhang Dong, Wu Lijuan, et al. Influence of residual stress on indentation hardness[J]. Journal of East China University of Science and Technology, 2012, 38(5): 652-656. [10]王 荣, 钟 盛, 胡超凡, 等. 曲轴感应淬火及残余应力的仿真与试验研究[J]. 热加工工艺, 2018, 47(2): 231-236. Wang Rong, Zhong Sheng, Hu Chaofan, et al. Simulation and experimental study on induction hardening and residual stress of crankshaft[J]. Hot Working Technology, 2018, 47(2): 231-236. [11]方 华, 高 峥, 袁兆成, 等. 曲轴中频感应淬火过程模拟及残余应力计算[J]. 汽车工程, 2004(3): 354-358. Fang Hua, Gao Zheng, Yuan Zhaocheng, et al. Numerical simulation on medium-frequency induction hardening and calculation of residual stress of crankshaft[J]. Automotive Engineering, 2004(3): 354-358. [12]Jung M, Kang M, Woo W, et al. Evaluations of stress-free lattice spacings and residual stresses in a quenched carbon steel cylinder using neutron diffraction[J]. Materials Science and Engineering A, 2013, 565: 392-395. [13]黄惠茹, 李晓阳, 张琳琳, 等. 淬火低碳钢硬度、残余应力和微观组织间的关系[J]. 科学技术与工程, 2017, 17(34): 191-196. Huang Huiru, Li Xiaoyang, Zhang Linlin, et al. Relationship among hardness, residual stress and microstructure of quenching low-carbon steel[J]. Science Technology and Engineering, 2017, 17(34): 191-196. [14]陈明伟, 侯增寿. 淬冷过程瞬态温度场有限元分析及淬硬层深度预测[J]. 太原工业大学学报, 1994(4): 14-20. Chen Mingwei, Hou Zengshou. Analysis of transient temperature fields during quenching by FEM and prediction of hardened depth[J]. Journal of Taiyuan University of Technology, 1994(4): 14-20. [15]赵正阳, 姜 含, 郭博静, 等. 感应淬火硬化层深度的预测方法及其精度探讨[J]. 金属热处理, 2017, 42(3): 159-164. Zhao Zhengyang, Jiang Han, Guo Bojing, et al. Prediction method and its precision discussion for hardened layer depth of induction quenching[J]. Heat Treatment of Metals, 2017, 42(3): 159-164. |