[1]丁 轩, 甘玉荣, 蒋爱娟, 等. 时效处理对7A55铝合金微观组织和性能的影响[J]. 金属热处理, 2021, 46(9): 120-123. Ding Xuan, Gan Yurong, Jiang Aijuan, et al. Influence of aging treatment on microstructure and properties of 7A55 aluminum alloy[J]. Heat Treatment of Metals, 2021, 46(9): 120-123. [2]李 民, 李 云, 徐玉国, 等. 固溶处理对7B04铝合金冷轧板组织性能的影响[J]. 金属热处理, 2020, 45(9): 105-110. Li Min, Li Yun, Xu Yuguo, et al. Effect of solution treatment on microstructure and properties of cold rolling 7B04 aluminum alloy sheet[J]. Heat Treatment of Metals, 2020, 45(9): 105-110. [3]Zhang Z Q, Yu J H, He D Y. Influence of contact solid-solution treatment on microstructures and mechanical properties of 7075 aluminum alloy[J]. Materials Science and Engineering A, 2018, 743: 500-503. [4]邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29(9): 2115-2141. Deng Yunlai, Zhang Xinming. Development of aluminum and aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2115-2141. [5]Jiang J F, Wang Y, Liu Y Z, et al. Microstructure and mechanical properties of 7005 aluminum alloy processed by one-pass equal channel reciprocating extrusion[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(3): 609-625. [6]孙 杰, 房洪杰, 刘 慧, 等. 7085铝合金的热处理工艺[J]. 金属热处理, 2019, 44(2): 187-191. Sun Jie, Fang Hongjie, Liu Hui, et al. Heat treatment processes of 7085 aluminum alloy[J]. Heat Treatment of Metals, 2019, 44(2): 187-191. [7]王 珊, 杨春苗, 张日强, 等. 回归制度对7A20铝合金RRA过程中组织性能的影响[J]. 金属热处理, 2021, 46(11): 191-194. Wang Shan, Yang Chunmiao, Zhang Riqiang, et al. Influence of retrogression treatment on microstructure and mechanical properties of 7A20 aluminum alloy during RRA treatment[J]. Heat Treatment of Metals, 2021, 46(11): 191-194. [8]Liu L L, Pan Q L, Wang X D, et al. The effects of aging treatments on mechanical property and corrosion behavior of spray formed 7055 aluminum alloy[J]. Journal of Alloys and Compounds, 2018, 735: 261-276. [9]祝国川, 熊柏青, 佟有志, 等. 固溶处理对7B52铝合金板材力学性能和断裂行为的影响[J]. 中国有色金属学报, 2017, 27(5): 877-884. Zhu Guochuan, Xiong Baiqing, Tong Youzhi, et al. Effect of solution treatment on mechanical properties and fracture behavior of 7B52 aluminum alloy plate[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(5): 877-884. [10]王基月, 徐莉萍. 双级固溶处理对7075高强铝合金组织和性能的影响[J]. 金属热处理, 2020, 45(3): 166-168. Wang Jiyue, Xu Liping. Effect of two-stage solution treatment on microstructure and properties of 7075 high strength aluminum alloy[J]. Heat Treatment of Metals, 2020, 45(3): 166-168. [11]Xiao Y P, Pan Q L, Li W B, et al. Influence of retrogression and re-aging treatment on corrosion behavior of an Al-Zn-Mg-Cu alloy[J]. Materials and Design, 2011, 32(4): 2149-2156. [12]Han N M, Zhang X M, Liu S D, et al. Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050[J]. Journal of Alloys and Compounds, 2011, 509(10): 4138-4145. [13]Peng G S, Chen K H, Chen S Y, et al. Evolution of the second phase particles during the heating-up process of solution treatment of Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2015, 641: 237-241. [14]Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on hot deformation behavior and microstructure evolution of 7085 aluminum alloy[J]. Journal of Alloys and Compounds, 2012, 537: 338-345. [15]张洪静, 黄晓冬, 孙有政, 等. 固溶温度对7050铝合金锻板组织和性能的影响[J]. 材料热处理学报, 2020, 41(11): 46-52. Zhang Hongjing, Huang Xiaodong, Sun Youzheng, et al. Effect of solid solution temperature on microstructure and properties of 7050 aluminum alloy forging plate[J]. Transactions of Materials and Heat Treatment, 2020, 41(11): 46-52. [16]Børvik T, Hopperstad O S, Pedersen K O. Quasi-brittle fracture during structural impact of AA7075-T651 aluminum plates[J]. International Journal of Impact Engineering, 2010, 37(5): 537-551. |