[1]刘振宇, 周砚磊, 狄国标, 等. 高强度厚规格海洋平台用钢研究进展及应用[J]. 中国工程科学, 2014, 16(2): 31-38. Liu Zhenyu, Zhou Yanlei, Di Guobiao, et al. Research progress and application of high performance offshore platform steel[J]. Strategic Study of CAE, 2014, 16(2): 31-38. [2]Sumpter J, Caudrey A J. Recommended fracture toughness for ship hull steel and weld[J]. Marine Structures, 1995, 8(4): 345-357. [3]Xu L Y, Yang J, Wang R Z, et al. Effect of Mg content on the microstructure and toughness of heat-affected zone of steel plate after high heat input welding[J]. Metallurgical and Materials Transactions A, 2016, 47(7): 3354-3364. [4]Shim J H, Cho Y W, Chung S H, et al. Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel[J]. Acta Materialia, 1999, 47(9): 2751-2760. [5]Chai F, Yang C F, Su H, et al. Effect of Zr addition to Ti-killed steel on inclusion formation and microstructural evolution in welding induced coarse-grained heat affected zone[J]. Acta Metallurgica Sinica (English Letters), 2008, 21(3): 220-226. [6]Samanta S K, Mitra S K, Pal T K. Effect of rare earth elements on microstructure and oxidation behaviour in TIG weldments of AISI 316L stainless steel[J]. Materials Science and Engineering A, 2006, 430(1/2): 242-247. [7]岳丽杰, 汪磊丽, 王龙妹. 微量稀土对洁净耐候钢力学性能的影响[J]. 稀土, 2014, 35(6): 20-26. Yue Lijie, Wang Leili, Wang Longmei. Influence of rare earth element on the mechanical properties of clean weathering steel[J]. Chinese Rare Earths, 2014, 35(6): 20-26. [8]任 东, 金自力, 吴忠旺. 镧对高强IF钢退火过程中组织及力学性能的影响[J]. 金属热处理, 2019, 44(5): 22-26. Ren Dong, Jin Zili, Wu Zhongwang. Effects of lanthanum on microstructure and mechanical properties of high strength IF steel during annealing[J]. Heat Treatment of Metals, 2019, 44(5): 22-26. [9]蔡茜娜, 汪志刚, 谢飞鸣, 等. 钇基稀土对51CrV4弹簧钢冲击韧性的影响[J]. 有色金属科学与工程, 2018, 9(4): 97-101. Cai Xina, Wang Zhigang, Xie Feiming, et al. Effect of Y-based rare earth on impact properties of 51CrV4 spring steel[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 97-101. [10]Zhang X, Wei W, Cheng L, et al. Effects of niobium and rare earth elements on microstructure and initial marine corrosion behavior of low-alloy steels[J]. Applied Surface Science, 2019, 475(2): 83-93. [11]Wang H, Xiong L, Zhang L, et al. Investigation of Re-Os-As inclusions in high carbon steels[J]. Metallurgical and Materials Transactions B, 2017, 48(6): 2849-2858. [12]富晓阳, 杨吉春, 蒋学智, 等. Ce对T91耐热钢夹杂物的变质及冲击韧性的影响[J]. 稀土, 2015, 36(5): 60-65. Fu Xiaoyang, Yang Jichun, Jiang Xuezhi, et al. Effects of Ce on the inclusion and impact toughness of T91 heat-resistant steel[J]. Chinese Rare Earths, 2015, 36(5): 60-65. [13]尹振江, 彭园龙, 蔡茜娜, 等. 钇基稀土对51CrV4弹簧钢夹杂物影响[J]. 有色金属科学与工程, 2017, 8(4): 26-30. Yin Zhenjiang, Peng Yuanlong, Cai Xina, et al. Effect of yttrium based rare earth on inclusions in 51CrV4 spring steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 26-30. [14]Nabeel M, Karasev A, Jönsson P G. Formation and growth mechanism of clusters in liquid REM-alloyed stainless steels[J]. ISIJ International, 2015, 55(11): 2358-2364. [15]Hufenbach J, Helth A, Lee M H, et al. Effect of cerium addition on microstructure and mechanical properties of high-strength Fe85Cr4Mo8V2C1 cast steel[J]. Materials Science and Engineering A, 2016, 674(10): 366-374. [16]Chen R C, Wang Z G, Zhu F S, et al. Effects of rare-earth micro-alloying on microstructures, carbides, and internal friction of 51CrV4 steels[J]. Journal of Alloys and Compounds, 2020, 824: 153849. [17]Liu D, Qin J, Zhang Y, et al. Effect of yttrium addition on the hot deformation behavior of Fe-6.5wt%Si alloy[J]. Materials Science and Engineering A, 2020, 797: 140238. [18]Yang C, Luan Y, Li D, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel[J]. Journal of Materials Science and Technology, 2019, 35(7): 1298-1308. [19]习小军, 赖朝彬, 李京社, 等. 钇基稀土对E36钢板显微组织及冲击性能的影响[J]. 工程科学学报, 2017, 39(2): 244-250. Xi Xiaojun, Lai Chaobin, Li Jingshe, et al. Effect of Y-base rare earth on the microstructure and impact toughness of E36 steel plate[J]. Chinese Journal of Engineering, 2017, 39(2): 244-250. |