[1]赵立臣, 崔春翔, 刘双进, 等. 基于d电子合金设计方法的生物医用新型亚稳β钛合金的设计及性能研究[J]. 稀有金属材料与工程, 2008, 37(1): 108-111. Zhao Lichen, Cui Chunxiang, Liu Shuangjin, et al. Design and research on properties of new type metastable β-titanium alloys for biomedical applications based on the d-electron alloy design method[J]. Rare Metal Materials and Engineering, 2008, 37(1): 108-111. [2]杨永建, 孙 威, 马秀梅. 生物医用β型钛合金设计研究[J]. 科技创新导报, 2009, 16: 10-12. Yang Yongjian, Sun Wei, Ma Xiumei. Design of biomedical β-type Ti alloy[J]. Science and Technology Innovation Herald, 2009, 16: 10-12. [3]于振涛, 余 森, 张明华, 等. 外科植入物用新型医用钛合金材料设计、开发与应用现状及进展[J]. 中国材料进展, 2010, 29(12): 34-51. Yu Zhentao, Yu Sen, Zhang Minghua, et al. Design, development and application of new medical titanium alloy materials for surgical implants[J]. Materials China, 2010, 29(12): 34-51. [4]梁芳慧. 关节置换植入物用材料临床应用现状及发展趋势[J]. 材料科学与工程学报, 2009, 27(1): 112-117. Liang Fanghui. Clinical application and development of materials used for joint replacement implants[J]. Journal of Materials Science and Engineering, 2009, 27(1): 112-117. [5]吴义舟, 郭爱红. 生物医用钛合金发展和研究现状[J]. 材料开发与应用, 2010, 25(2): 81-85. Wu Yizhou, Guo Aihong. Development and research status of biomedical titanium alloys[J]. Development and Application of Materials, 2010, 25(2): 81-85. [6]Hao Y L, Li S J, Sun S Y, et al. Effect of Zr and Sn on Young's modulus and super elasticity of Ti-Nb-based alloys[J]. Materials Science and Engineering A, 2006, 441(1/2): 112-118. [7]戴世娟, 陈 锋, 王 煜. 新型医用Ti-35Nb-4Sn-6Mo-9Zr和Ti-35Nb-1.3Mo-3.7Zr合金在林格溶液中的电化学腐蚀行为[J]. 稀有金属材料与工程, 2014(S1): 90-95. Dai Shijuan, Chen Feng, Wang Yu. Electrochemical corrosion behaviors of new biomedical titanium alloys Ti-35Nb-4Sn-6Mo-9Zr and Ti-35Nb-1.3Mo-3.7Zr in Ringer's solution[J]. Rare Metal Materials and Engineering, 2014(S1): 90-95. [8]于振涛, 余 森, 程 军, 等. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017, 53(10): 1238-1264. Yu Zhentao, Yu Sen, Cheng Jun, et al. Development and application of novel biomedical titanium alloy materials[J]. Acta Metalurgica Sinica, 2017, 53(10): 1238-1264. [9]Geetha M, Mudali U K, Gogia A K, et al. Influence of microstructure and alloying elements on corrosion behavior of Ti-13Nb-13Zr alloy[J]. Corrosion Science, 2004, 46(4): 877-892. [10]王 微, 吴文俊, 王 刚, 等. 医用低弹性模量Ti合金的设计与工艺研究[J]. 热加工工艺, 2015, 44(19): 109-112. Wang Wei, Wu Wenjun, Wang Gang, et al. Design and process study on Ti-alloy with low elastic modulus for medicine[J]. Hot Working Technology, 2015, 44(19): 109-112. [11]Liu Q, Meng Q K, Guo S, et al. α′ type Ti-Nb-Zr alloys with ultra-low Young's modulus and high strength[J]. Progress in Natural Science: Materials International, 2013, 23: 562-565. [12]Biesiekierski A, Ping D, Li Y, et al. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement[J]. Acta Biomaterialia, 2017, 53: 549-558. [13]Azarbarmas M, Emamy M, Rassizadehghani J, et al. The influence of beryllium addition on the microstructure and mechanical properties of Al-15%Mg2Si in-situ metal matrix composite[J]. Materials Science and Engineering A, 2011, 528(28): 8205-8211. [14]Feng Z H, Jiang X J, Zhou Y K, et al. Influence of beryllium addition on the microstructural evolution and mechanical properties of Zr alloys[J]. Materials and Design, 2015, 65: 890-895. [15]Koyama M, Lee T, Lee C S, et al. Grain refinement effect on cryogenic tensile ductility in a Fe-Mn-C twinning-induced plasticity steel[J]. Materials and Design, 2013, 49: 234-241. [16]李旭升, 辛社伟, 毛小南, 等. 钛合金氧化行为研究进展[J]. 钛工业进展, 2014, 31(3): 7-13. Li Xusheng, Xin Shewei, Mao Xiaonan, et al. Progress in research on oxidation behavior of titanium alloy[J]. Titanium Industry Progress, 2014, 31(3): 7-13. [17]Meng K, Guo K, Yu Q, et al. Effect of annealing temperature on the microstructure and corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy in hydrochloric acid solution[J]. Corrosion Science, 2021, 183: 109320. [18]Chui P F, Jing R, Zhang F G, et al. Mechanical properties and corrosion behavior of β-typeTi-Zr-Nb-Mo alloys for biomedical application[J]. Journal of Alloys and Compounds, 2020, 842: 155693. [19]Mccafferty E. Validation of corrosion rates measured by the Tafel extrapolation method[J]. Corrosion Science, 2005, 47(12): 3202-3215. |