[1]邹章雄, 朗宇平, 屈华鹏, 等. 无磁钻铤用Cr-Mn-N奥氏体不锈钢组织性能研究[J]. 热加工工艺, 2013, 42(18): 147-152. Zou Zhangxiong, Lang Yuping, Qu Huapeng, et al. Research on microstructure and properties of Cr-Mn-N austenitic stainless steel for non-magnetic drilling collar application[J]. Hot Working Technology, 2013, 42(18): 147-152. [2]张世霄, 崔 岩, 屈华鹏, 等. 无磁钻铤用0Cr19Mn21Ni2N奥氏体不锈800 ℃等温时效析出机制[J]. 金属热处理, 2016, 41(9): 52-56. Zhang Shixiao, Cui Yan, Qu Huapeng, et al. Precipitation mechanical of 0Cr19Mn21Ni2N austenitic stainless steel for non-magnetic drill collar during isothermal aging at 800 ℃[J]. Heat Treatment of Metals, 2016, 41(9): 52-56. [3]Cordea J N, Sheth H V, Jasper J C. Development of an improved austenitic drilling collar alloy[J]. Material Performance, 1987, 26(9): 50-54. [4]张世霄. 海洋油气钻采高氮奥氏体不锈钢加工工艺研究[D]. 唐山: 华北理工大学, 2016. Zhang Shixiao. Research on processing technology of high nitrogen austenitic stainless steels for offshore oil gas drilling application[D]. Tangshan: North China University of Science and Technology, 2016. [5]敖 影, 周灿栋. P550奥氏体不锈钢的热变形行为研究[J]. 上海金属, 2016, 38(5): 22-26. Ao Ying, Zhou Candong. Thermal deformation behavior of P550 austenitic stainless steel[J]. Shanghai Metals, 2016, 38(5): 22-26. [6]屈华鹏, 郎宇平, 陈海涛. 无磁钻铤用高氮不锈钢的研究和发展[J]. 热加工工艺, 2014, 43(24): 14-18. Qu Huapeng, Lang Yuping, Chen Haitao. Research and development on high nitrogen stainless steels used for non-magnetic drilling collar[J]. Hot Working Technology, 2014, 43(24): 14-18. [7]吕栓录, 骆发前, 周 杰, 等. 钻铤断裂原因分析[J]. 理化检验(物理分册), 2009, 45(5): 309-311, 322. Lü Shuanlu, Luo Faqian, Zhou Jie, et al. Fracture reason analysis on drill collar[J]. Physical Testing and Chemical Analysis(Physical Testing), 2009, 45(5): 309-311, 322. [8]吕栓录, 张 宏, 许 峰, 等. 石油钻铤断裂原因分析[J]. 机械工程材料, 2010, 36(6): 80-82. Lü Shuanlu, Zhang Hong, Xu Feng, et al. Cause analysis of oil drill collar fracture[J]. Material for Mechanical Engineering, 2010, 36(6): 80-82. [9]石 锋, 崔文芳, 王立军, 等. 高氮奥氏体不锈钢研究进展[J]. 上海金属, 2006, 28(5): 45-50. Shi Feng, Cui Wenfang, Wang Lijun, et al. Advance in the research of high-nitrogen austenitic stainless steels[J]. Shanghai Metals, 2006, 28(5): 45-50. [10]孙 征. 无磁钻铤用高氮不锈钢的研究和发展[J]. 信息记录材料, 2018, 19(4): 10-11. [11]张增武. 无磁钻铤用高氮不锈钢TSMF166冶炼实践[J]. 炼钢, 2013, 29(4): 19-21. Zhang Zengwu. Smelting practice of TSMF166 high-nitrogen non-magnetic steel for drill collar[J]. Steelmaking, 2013, 29(4): 19-21. [12]Shankar P, Sundararaman D, Ranganathan S. Clustering and ordering of nitrogen in nuclear grade 316LN austenitic stainless steel[J]. Journal of Nuclear Materials, 1998, 254(1): 1-8. [13]Briant C L, Hall E L. A comparision between grain boundary chromium depletion in austenitic stainless steel and corrosion in the modified strauss test[J]. Corrosion, 1986, 42(9): 522-531. [14]房 菲, 李静媛, 王一德. 含氮不锈钢凝固模式及显微组织研究[J]. 北京科技大学学报, 2014(11): 1490-1496. Fang Fei, Li Jingyuan, Wang Yide. Solidification mode and microstructure of nitrogenous stainless steels[J]. Journal of University of Science and Technology Beijing, 2014(11): 1490-1496. [15]房 菲, 李静媛, 王一德. 18Mn18Cr 高氮钢析出相特征及形成机制[J]. 北京科技大学学报, 2014(6): 768-779. Fang Fei, Li Jingyuan, Wang Yide. Characteristics and forming mechanism of precipitates in 18Mn18Cr high nitrogen steel[J]. Journal of University of Science and Technology Beijing, 2014(6): 768-779. [16]Okazaki Y, Miyyahara K, Wade N, et al. Effect of manganese and chromium on microstructure and toughness of Fe-Cr-Mn alloys resulting from solid-solution treatment[J]. Journal of the Japan Institute of Metals, 1989, 53(5): 502-511. [17]Franks R, Binder W O, Thampson J. Austenitic chromium-manganese-nickel steels containing nitrogen[J]. Transaction of the American Society for Metals, 1955, 47: 231-263. [18]张玉碧, 刘海定, 王东哲, 等. 一种含氮Cr-Ni型奥氏体不锈钢的工艺设计与热处理研究[J]. 热加工工艺, 2016, 45(18): 177-181, 187. Zhang Yubi, Liu Haiding, Wang Dongzhe, et al. Process design and heat treatment research of a nitrogen-containing Cr-Ni type austenitic stainless steel[J]. Hot Working Technology, 2016, 45(18): 177-181, 187. |