[1]Chen Shangping, Rana Radhakanta, Haldar Arunansu, et al. Current state of Fe-Mn-Al-C low density steels[J]. Progress in Materials Science, 2017, 89: 345-391. [2]章小峰, 李家星, 万亚雄, 等. 低密度中有序析出相的研究进展[J]. 材料导报(A), 2019, 33(12): 3979-3989. Zhang Xiaofeng, Li Jiaxing, Wan Yaxiong, et al. Research progress of ordered precipitates in low density[J]. Materials Reports (A), 2019, 33(12): 3979-3989. [3]Kim H, Suh D W, Kim N J. Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties[J]. Science amd Technology of Advanced Materials, 2013, 14(1): 014205. [4]Suh D W, Kim N J. Low-density steels[J]. Scripta Materialia, 2013, 68(6): 337-338. [5]Rana R. Low-density steels[J]. JOM, 2014, 66(9): 1730-1733. [6]Raabe D, Springer H, Gutierrez-Urrutia I, et al. Alloy design, combinatorial synthesis, and microstructure-property relations for low-density Fe-Mn-Al-C austenitic steels[J]. JOM, 2014, 66(9): 1845-1856. [7]刘春泉, 彭其春, 薛正良, 等. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报, 2019, 33(15): 2572-2581. Liu Chunquan, Peng Qichun, Xue Zhengliang, et al. Research status of Fe-Mn-Al-C series low density high strength steel[J]. Materials Reports, 2019, 33(15): 2572-2581. [8]Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels[J]. Steel Research International, 2006, 77(9/10): 627-633. [9]Zheng W S, Lu X G, Mao H H. Thermodynamic modeling of the Al-C-Mn system supported by ab initio calculations[J]. Calphad, 2018, 60: 222-230. [10]Zhao C, Song R B, Zhang L F, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10A1-0.7C low-density steel[J]. Materials and Design, 2016, 91: 348-360. [11]Zambrano O A, Valdes J, Aguilar Y, et al. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation[J]. Materials Science and Engineering A, 2017, 689: 269-285. [12]王 萍, 郭爱民, 侯清宇, 等. 时效态Fe-Mn-Al-C钢的性能和变形机制[J]. 材料研究学报, 2021, 35(3): 184-192. Wang Ping, Guo Aimin, Hou Qingyu, et al. Properties and deformation mechanism of aged Fe-Mn-Al-C steel[J]. Chinese Journal of Materials Research, 2021, 35(3): 184-192. [13]刘少尊, 王春旭, 厉 勇, 等. 时效温度对固溶态Fe-Mn-Al-C低密度钢性能与析出相的影响[J]. 金属热处理, 2015, 40(11): 103-107. Liu Shaozun, Wang Chunxu, Li Yong, et al. Effect of aging temperature on properties and precipitation of Fe-Mn-Al-C low-density steel[J]. Heat Treatment of Metals, 2015, 40(11): 103-107. [14]刘少尊, 厉 勇, 王春旭, 等. 固溶处理对Fe-Mn-Al-C系低密度钢组织与性能的影响[J]. 金属热处理, 2015, 40(9): 120-124. Liu Shaozun, Li Yong, Wang Chunxu, et al. Effects of solution treatment on microstructures and properties of Fe-Mn-Al-C low density steel[J]. Heat Treatment of Metals, 2015, 40(9): 120-124. [15]Zhang J, Jiang Y, Zheng W, et al. Revisiting the formation mechanism of intragranular κ-carbide in austenite of a Fe-Mn-Al-Cr-C low-density steel[J]. Scripta Materialia, 2021, 199(3): 113836. [16]Park K T, Hwangs W, Son C Y, et al. Effects of heat treatment on microstructure and tensile properties of a Fe-27Mn-12Al-0.8C low-density steel[J]. JOM, 2014, 66(9): 1828-1836. [17]崔忠圻, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2007. Cui Zhongqi, Tan Yaochun. Metallurgy and Heat Treatment[M]. Beijing: China Machine Press, 2007. [18]袁 用. 高强度低密度钢的钒合金化研究[D]. 北京: 钢铁研究总院, 2017. Yuan Yong. Study on vanadium alloying of high strength and low density steel[D]. Beijing: General Iron and Steel Research Institute, 2017. [19]魏学源, 尚 进, 陈 斌, 等. 固溶温度对热轧Fe-Mn-Al-C低密度高强钢组织和性能的影响[J]. 金属热处理, 2019, 44(8): 142-146. Wei Xueyuan, Shang Jin, Chen Bin, et al. Effect of solution treatment temperature on microstructure and properties of hot-rolled Fe-Mn-Al-C low density high strength steel[J]. Heat Treatment of Metals, 2019, 44(8): 142-146. |