[1]骆冬智, 孙智富. 铝合金增材制造技术在军工领域的研究进展[J]. 兵器装备工程学报, 2019, 40(8): 212-218. Luo Dongzhi, Sun Zhifu. Recent developments on researches of military usage Al alloys via addictive manufacturing[J]. Journal of Ordnance Equipment Engineering, 2019, 40(8): 212-218. [2]Pickin C G, Young K. Evaluation of cold metal transfer(CMT) process for welding aluminium alloy[J]. Science and Technology of Welding and Joining, 2006, 11(5): 583-585. [3]Mereddy S, Bermingham M J, Stjohn D H, et al. Grain refinement of wire arc additively manufactured titanium by the addition of silicon[J]. Journal of Alloys and Compounds, 2017, 695: 2097-2103. [4]蒋 旗, 张培磊, 刘志强, 等. 冷金属过渡加脉冲电弧增材制造4043铝合金薄壁件的组织与拉伸性能[J]. 机械工程材料, 2020, 44(1): 61-65. Jiang Qi, Zhang Peilei, Liu Zhiqiang, et al. Microstructure and tensile properties of arc additive manufacturing 4043 aluminum alloy thin-walled parts by CMT with addition of pulse[J]. Materials for Mechanical Engineering, 2020, 44(1): 61-65. [5]Martina F, Colegrove P A, Williams S W, et al. Microstructure of interpass rolled wire+arc additive manufacturing Ti-6Al-4V components[J]. Metallurgical and Materials Transactions A, 2015, 46(12): 6103-6118. [6]Zhang Haiou, Wang Xiangping, Wang Guilan, et al. Hybrid direct manufacturing method of metallic parts using deposition and micro continuous rolling[J]. Rapid Prototyping Journal, 2013, 19(6): 387-394. [7]Zhang C, Gao M, Zeng X. Workpiece vibration augmented wire arc additive manufacturing of high strength aluminum alloy[J]. Journal of Materials Processing Technology, 2019, 271: 85-92. [8]何 智, 胡 洋, 曲宏韬, 等. 超声冲击电弧增材制造钛合金零件的各向异性研究[J]. 航天制造技术, 2016, 12(6): 11-16. He Zhi, Hu Yang, Qu Hongtao, et al. Research on anisotropy of titanium alloy manufactured by ultrasonic impact treatment and wire and arc additive manufacture[J]. Aerospace Manufacturing Technology, 2016, 12(6): 11-16. [9]陈 伟, 陈玉华, 温涛涛, 等. 超声振动对电弧增材制造铝青铜合金组织和拉伸性能的影响[J]. 中国有色金属学报, 2020, 30(10): 40-54. Chen Wei, Chen Yuhua, Wen Taotao, et al. Effect of ultrasonic vibration on microstructure and tensile properties of aluminum bronze alloy produced by wire arc additive manufacturing[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(10): 40-54. [10]Yuan D, Shao S, Guo C, et al. Grain refining of Ti-6Al-4V alloy fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration[J]. Ultrasonics Sonochemistry, 2021, 73(10): 105472. [11]Jian X, Xu H, Meek T T. Effect of power ultrasound on solidification of aluminum A356 alloy[J]. Materials Letters, 2005, 59(2/3): 190-193. [12]从保强, 丁佳洛. CMT工艺对Al-Cu合金电弧增材制造气孔的影响[J]. 稀有金属材料与工程, 2014, 43(12): 3149-3153. Cong Baoqiang, Ding Jialuo. Influence of CMT process on porosity of wire arc additive manufactured Al-Cu alloy[J]. Rare Metal Materials and Engineering, 2014, 43(12): 3149-3153. [13]杨方洲. 超声波振动辅助AZ41/AZ31B镁合金焊接研究[D]. 重庆: 重庆大学, 2018. Yang Fangzhou. The research on ultrasonic vibration assisted AZ41/AZ31B magnesium alloy welding[D]. Chongqing: Chongqing University, 2018. |