[1]Ghasemi E, Zarei-Hanzaki A, Farabi E, et al. Flow softening and dynamic recrystallization behavior of BT9 titanium alloy: A study using process map development[J]. Journal of Alloys and Compounds, 2017, 695: 1706-1718. [2]Niu L, Wang S, Chen C. Mechanical behavior and deformation mechanism of commercial pure titanium foils[J]. Materials Science and Engineering A, 2017, 707(7): 435-442. [3]Lin Y C, Huang Jian, He Daoguang, et al. Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression[J]. Journal of Alloys and Compounds, 2019, 795: 471-482. [4]Guo J, Zhan M, Wang Y Y, et al. Unified modeling of work hardening and flow softening in two-phase titanium alloys considering microstructure evolution in thermomechanical processes[J]. Journal of Alloys and Compounds, 2018, 767: 34-45. [5]王 冠, 田昌龄, 寇琳媛, 等. 6063铝合金双道次热变形微观组织演变[J]. 金属热处理, 2020, 45(5): 23-28. Wang Guan, Tian Changling, Kou Linyuan, et al. Microstructure evolution of 6063 aluminum alloy during double-pass hot deformation[J]. Heat Treatment of Metals, 2020, 45(5): 23-28. [6]Li Xuesong, Wu Laizhi, Chen Jun, et al. Static softening characteristics and static recrystallization kinetics of aluminum alloy A6082 after hot deformation[J]. Journal of Shanghai Jiaotong University (Science), 2010, 15(3): 307-312. [7]赵 蒙, 李 萍, 薛克敏. TB8钛合金双道次热变形过程软化行为的研究[J]. 稀有金属与硬质合金, 2013, 41(3): 32-35. Zhao Meng, Li Ping, Xue Kemin. Studay on softening behavior of TB8 titanium alloy during double-rolling hot deformation[J]. Rare Metals and Cemented Carbides, 2013, 41(3): 32-35. [8]Yan Liangming, Shen Jian, Li Junpeng, et al. Static softening behaviors of 7055 alloy during the interval time of multi-pass hot compression[J]. Rare Metals, 2013, 32(3): 241-246. [9]Gurao N P, Kapoor R, Suwas S. Deformation behaviour of commercially pure titanium at extreme strain rates[J]. Acta Materialia, 2011, 59(9): 3431-3446. [10]韩 言, 赵 飞, 万明攀, 等. TC17钛合金热流变行为及组织演变机制研究[J]. 稀有金属, 2020, 44(3): 234-241. Han Yan, Zhao Fei, Wan Mingpan, et al. Thermal flow behaviors and microstructure evolution of TC17 alloys[J]. Chinese Journal of Rare Metals, 2020, 44(3): 234-241. [11]朱松鹤, 戴 兵, 张 梅, 等. 含Nb-Ti低碳微合金钢双道次高温压缩软化行为[J]. 材料热处理学报, 2010, 31(10): 53-57. Zhu Songhe, Dai Bing, Zhang Mei, et al. Softening behavior of low carbon Nb-Ti microalloyed steel during hot compression with double-pass[J]. Journal of Materials Heat Treatment, 2010, 31(10): 53-57. [12]崔 聪, 高 飞, 高 野, 等. 21Cr节镍型双相不锈钢高温形变过程的静态软化分析[J]. 金属热处理, 2022, 47(1): 79-87. Cui Cong, Gao Fei, Gao Ye, et al. Static softening analysis of 21Cr nickel saving duplex stainless steel during high temperature deformation process[J]. Heat Treatment of Metals, 2022, 47(1): 79-87. [13]Tang Jie, Zhang Hui, Teng Jie, et al. Effect of Zn content on the static softening behavior and kinetics of Al-Zn-Mg-Cu alloys during double-stage hot deformation[J]. Journal of Alloys and Compounds, 2019, 806: 1081-1091. [14]刘少飞, 王 珂. 近β钛合金高温压缩变形过程中流变软化行为研究进展[J]. 材料工程, 2017, 45(2): 119-128. Liu Shaofei, Wang Ke. Progress in research on flow softening behavior of near β titanium alloys during hot compression deformation process[J]. Journal of Materials Engineering, 2017, 45(2): 119-128. [15]范沁红, 马立峰, 蒋亚平, 等. 镁合金双道次热变形静态软化及残余应变[J]. 稀有金属材料与工程, 2017, 46(6): 1590-1595. Fan Qinhong, Ma Lifeng, Jiang Yaping, et al. Static softening and residual strain of magnesium alloy in the two-pass thermal deformation[J]. Rare Metal Materials and Engineering, 2017, 46(6): 1590-1595. [16]Lan Liangyun, Qiu Chunlin, Zhao Dewen, et al. Dynamic and static recrystallization behavior of low carbon high niobium microalloyed steel[J]. Journal of Iron and Steel Research, 2011, 18(1): 55-60. [17]Ma X Z, Xiang Z L, Ma M Z, et al. Investigation of microstructures, textures, mechanical properties and fracture behaviors of a newly developed near α titanium alloy[J]. Materials Science and Engineering A, 2020, 775: 138996. |