[1]陈志凯, 关婷婷, 李 强, 等. 激光淬火40Cr钢的冲击磨损行为研究[J]. 材料导报, 2020, 34(S2): 407-411, 422. Chen Zhikai, Guan Tingting, Li Qiang, et al. Impact abrasive wear behaviors of quenched 40Cr steel[J]. Materials Reports, 2020, 34(S2): 407-411, 422. [2]Chen Z K, Zhu Q H, Wang J, et al. Behaviors of 40Cr steel treated by laser quenching on impact abrasive wear[J]. Optics and Laser Technology, 2018, 103: 118-125. [3]Zhao X H, Zhao B, Liu Y, et al. Research on friction and wear behavior of gradient nano-structured 40Cr steel induced by high frequency impacting and rolling[J]. Engineering Failure Analysis, 2018, 83: 167-177. [4]何建群, 吴成武, 王靖雯, 等. 12CrNi3A钢凸轮轴的激光熔覆再制造技术[J]. 金属热处理, 2021, 46(2): 200-203. He Jianqun, Wu Chengwu, Wang Jingwen, et al. Laser cladding remanufacturing technology of 12CrNi3A steel camshaft[J]. Heat Treatment of Metals, 2021, 46(2): 200-203. [5]Zhu L D, Wang S H, Pan H C, et al. Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology[J]. Journal of Manufacturing Processes, 2020, 49: 344-354. [6]Lu Y Z, Huang G K, Wang Y Z, et al. Crack-free Fe-based amorphous coating synthesized by laser cladding[J]. Materials Letters, 2018, 210: 46-50. [7]李朝晖, 李美艳, 韩 彬, 等. 高压柱塞高速激光熔覆镍基合金涂层组织和耐磨性[J]. 表面技术, 2020, 49(10): 45-54. Li Chaohui, Li Meiyan, Han Bin, et al. High-pressure plunger high-speed laser cladding nickel-based alloy coating structure and wear resistance[J]. Surface Technology, 2020, 49(10): 45-54. [8]韩基泰, 武美萍, 崔 宸, 等. 激光功率对42CrMo钢激光熔覆层组织和摩擦磨损性能的影响[J]. 金属热处理, 2020, 45(11): 214-217. Han Jitai, Wu Meiping, Cui Chen, et al. Effect of laser power on microstructure and friction and wear properties of laser clad layer on 42CrMo steel[J]. Heat Treatment of Metals, 2020, 45(11): 214-217. [9]王东升, 田宗军. 激光熔覆NiCrBSi/WC-Co复合涂层的组织与耐磨性能[J]. 机械工程材料, 2019, 43(11): 16-20. Wang Dongsheng, Tian Zongjun. Microstructure and wear resistance of NiCrBSi/WC-Co composite coating by laser cladding[J]. Materials for Mechanical Engineering, 2019, 43(11): 16-20. [10]Yang Z Z, Hao H, Gao Q, et al. Strengthening mechanism and high-temperature properties of H13+WC/Y2O3 laser-cladding coatings[J]. Surface and Coating Technology, 2021, 405(15): 126544. [11]白 杨, 王振华, 左娟娟, 等. 激光熔覆制备铁基复合涂层及其耐热耐蚀性能[J]. 中国激光, 2020, 47(10): 1002001. Bai Yang, Wang Zhenhua, Zuo Juanjuan, et al. Fe-based composite coating prepared by laser cladding and its heat and corrosion resistance[J]. Chinese Journal of Lasers, 2020, 47(10): 1002001. [12]李眉葭, 孙荣禄, 牛 伟, 等. Ti3SiC2含量对激光熔覆自润滑涂层组织及性能的影响[J]. 金属热处理, 2018, 43(10): 179-184. Li Meijia, Sun Ronglu, Niu Wei, et al. Effect of Ti3SiC2 content on microstructure and properties of laser clad self-lubricant coating[J]. Heat Treatment of Metals, 2018, 43(10): 179-184. [13]Liu J S, Shi Y. Microstructure and wear behavior of laser-cladded Ni-based coatings decorated by graphite particles[J]. Surface & Coatings Technology, 2021, 412: 127044. [14]邓德伟, 吕 捷, 马玉山, 等. FV520B钢激光焊接工艺参数优化及组织性能[J]. 材料导报, 2021, 35(8): 127-133. Deng Dewei, Lü Jie, Ma Yushan, et al. Processing parameters optimization, microstructures and properties of laser welded FV520B steel[J]. Materials Reports, 2021, 35(8): 127-133. [15]李东升, 石 拓, 石世宏, 等. 异形基面平顶薄壁结构激光熔覆成形工艺研究[J]. 中国激光, 2019, 46(11): 1102002. Li Dongsheng, Shi Tuo, Shi Shihong, et al. Laser cladding forming technology of flat-top thin-walled part based on special-shaped base surface[J]. Chinese Journal of Lasers, 2019, 46(11): 1102002. [16]刘立君, 刘大宇, 王晓陆, 等. H13钢激光熔覆陶瓷修复层的参数优化[J]. 焊接学报, 2020, 41(7): 65-70. Liu Lijun, Liu Dayu, Wang Xiaolu, et al. Parameter optimization of laser cladding ceramic repair layer of H13 steel[J]. Transactions of the China Welding Institution, 2020, 41(7): 65-70. |