[1]孙宝壮, 周霄骋, 李晓荣, 等. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818. Sun Baozhuang, Zhou Xiaocheng, Li Xiaorong, et al. Stress corrosion cracking behavior of 316L stainless steel with varying microstructure in ammonium chloride environment[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(6): 811-818. [2]范宇恒. 不锈钢微观组织结构对其氢脆性能的影响[D]. 合肥: 中国科学技术大学, 2019. Fan Yuheng. Effect of microstructures on the hydrogen embrittlement of stainless steels[D]. Hefei: University of Science and Technology of China, 2019. [3]Matsuo T, Yamabe J, Matsuoka S. Effects of hydrogen on tensile properties and fracture surface morphologies of type 316L stainless steel[J]. International Journal of Hydrogen Energy, 2014, 39(7): 3542-3551. [4]褚武杨. 氢损伤和滞后断裂[M]. 北京: 冶金工业出版社, 1988. [5]管 真, 孙永庆, 李 莉, 等. 15-5PH不锈钢的氢脆敏感性[J]. 金属热处理, 2019, 44(12): 226-232. Guan Zhen, Sun Yongqing, Li Li, et al. Hydrogen embrittlement sensitivity of 15-5PH stainless steel[J]. Heat Treatment of Metals, 2019, 44(12): 226-232. [6]Lin J, Chen F, Liu F, et al. Hydrogen permeation behavior and hydrogen-induced defects in 316L stainless steels manufactured by additive manufacturing[J]. Materials Chemistry and Physics, 2020, 250: 123038. [7]张慧云, 孟宪明, 郑留伟, 等. 敏化处理对不同状态304奥氏体不锈钢氢脆敏感性的影响[J]. 金属热处理, 2021, 46(8): 164-169. Zhang Huiyun, Meng Xianming, Zheng Liuwei, et al. Effect of sensitization on hydrogen embrittlement sensitivity of 304 austenitic stainless steel in different states[J]. Heat Treatment of Metals, 2021, 46(8): 164-169. [8]燕春光, 陈胜虎, 李雅平, 等. 氢对316H不锈钢拉伸性能的影响[J]. 钢铁研究学报, 2019(11): 1004-1011. Yan Chunguang, Chen Shenghu, Li Yaping, et al. Influence of hydrogen on tension property of 316H stainless steel[J]. Journal of Iron and Steel Research, 2019(11): 1004-1011. [9]Neuharth J J, Cavalli M N. Investigation of high-temperature hydrogen embrittlement of sensitized austenitic stainless steels[J]. Engineering Failure Analysis, 2015, 49: 49-56. [10]蔡 肖, 施巧英, 邢百汇, 等. 高压氢气环境中δ铁素体对304奥氏体不锈钢氢脆敏感性的影响[J]. 机械工程材料, 2019(2): 7-12. Cai Xiao, Shi Qiaoying, Xing Baihui, et al. Effect of δ-ferrite on susceptibility to hydrogen embrittlement of 304 austenitic stainless steel in high-pressure hydrogen[J]. Materials for Mechanical Engineering, 2019(2): 7-12. [11]Zhang L, Wen M, Masaaki I, et al. Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures[J]. Acta Materialia, 2008, 56(14): 3414-3421. [12]Zhang L, Li Z Y, Zheng J Y, et al. Influence of low temperature prestrain on hydrogen gas embrittlement of metastable austenitic stainless steels[J]. International Journal of Hydrogen Energy, 2013, 38(25): 11181-11187. [13]余存烨. 奥氏体不锈钢氢脆[J]. 全面腐蚀控制, 2015, 29(8): 11-15. Yu Cunye. Hydrogen environment on austenite stainless steel[J]. Total Corrosion Control, 2015, 29(8): 11-15. [14]申勇峰, 李晓旭, 薛文颖, 等. 304不锈钢拉伸变形过程中的马氏体相变[J]. 东北大学学报(自然科学版), 2012, 33(8): 1125-1128. Shen Yongfeng, Li Xiaoxu, Xue Wenying, et al. Changes in martensite fraction of 304SS in tensile deformation[J]. Journal of Northeastern University(Natural Science), 2012, 33(8): 1125-1128. [15]王建华, 任立军. 高锰钢加工硬化机理研究[J]. 煤矿机械, 2003(1): 24-27. Wang Jianhua, Ren Lijun. Research hardening austenitic steel development[J]. Coal Mine Machinery, 2003(1): 24-27. [16]杨卓越, 苏 杰, 陈嘉砚, 等. C、Cr、Ni和Mn含量对304不锈钢变形诱发马氏体相变的影响[J]. 钢铁, 2007(5): 61-64, 78. Yang Zhuoyue, Su Jie, Chen Jiayan, et al. Effect of C, Cr, Ni and Mn content on deformation-induced martensite transformation in 304 austenitic stainless steel[J]. Iron and Steel, 2007(5): 61-64, 78. [17]Byun T S, Lee E H, Hunn J D. Plastic deformation in 316LN stainless steel-characterization of deformation microstructures[J]. Journal of Nuclear Materials, 2003, 321(1): 29-39. [18]Talonen J, Anninen H. Damping properties of austenitic stainless steels containing strain-induced martensite[J]. Metallurgical and Materials Transactions A, 2004, 35(8): 2401-2406. [19]徐 梅. 高屈服强度TWIP钢动态变形及其构件压溃吸能行为的研究[D]. 北京: 北京科技大学, 2018. Xu Mei. The study of high yield strength TWIP steel on the behavior characteristics of dynamic deformation and crushing energy absorbing of its structure components[D]. Beijing: University of Science and Technology Beijing, 2018. [20]Meyers M A, Vöhringer O, Lubarda V A. The onset of twinning in metals: A constitutive description[J]. Acta Materialia, 2001, 49(19): 4025-4039. |