[1]Tavares S, Silva F, Scandian C, et al. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel[J]. Corrosion Science, 2010, 52(11): 3835-3839. [2]刘 松, 韩艳春. 17-4PH钢涡轮轴端面缺陷检验诊断与工艺改进[J]. 金属热处理, 2021, 46(10): 252-256. Liu Song, Han Yanchun. Inspection diagnosis and process improvement on end face defects of 17-4PH steel turbo shaft[J]. Heat Treatment of Metals, 2021, 46(10): 252-256. [3]Yeli G, Auger M A, Wilford K, et al. Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties[J]. Acta Materialia, 2017, 125(15): 38-49. [4]Kiani M, Ishak J, Walker R, et al. Numerical modeling and experimental investigation of M-4330 low alloy and 17-4PH stainless steels low cycle fatigue behavior[J]. Experimental Techniques, 2018, 42(1): 93-104. [5]刘凯旋, 薛 松, 汪 鹏, 等. 中间调整处理对17-4PH不锈钢组织性能的影响[J]. 金属热处理, 2020, 45(9): 99-104. Liu Kaixuan, Xue Song, Wang Peng, et al. Effect of intermediate adjustment treatment on microstructure and properties of 17-4PH stainless steel[J]. Heat Treatment of Metals, 2020, 45(9): 99-104. [6]杨 钢, 王剑星, 李许明, 等. 合金元素-铌对0Cr17Ni4Cu4Nb不锈钢组织与力学性能的影响[J]. 特钢技术, 2011, 17(3): 5-9. Yang Gang, Wang Jianxing, Li Xuming, et al. Effect of alloy element on microstructure and mechanical properties of 0Cr17Ni4Cu4Nb stainless steel-niobium[J]. Special Steel Technology, 2011, 17(3): 5-9. [7]Sun Y, Zhong Y, Wang L. The interaction between ε-copper and dislocation in a high copper 17-4PH steel[J]. Materials Science and Engineering A, 2019, 756: 319-327. [8]Wang J, Zou H, Cong L. Relationship of microstructure transformation and hardening behavior of type 17-4PH stainless steel[J]. Journal of University of Science and Technology Beijing, 2006, 13(3): 235-239. [9]赵志浩, 王 旭, 吴 明. 热处理对05Cr17Ni4Cu4Nb钢耐蚀性的影响[J]. 金属热处理, 2018, 43(12): 109-114. Zhao Zhihao, Wang Xu, Wu Ming. Effect of heat treatment on corrosion resistance of 05Cr17Ni4Cu4Nb steel[J]. Heat Treatment of Metals, 2018, 43(12): 109-114. [10]孙永伟, 范方雄, 王灵水. 固溶冷却方式对17-4PH钢显微组织及力学性能的影响[J]. 金属热处理, 2020, 45(5): 56-62. Sun Yongwei, Fan Fangxiong, Wang Lingshui. Effect of solution cooling method on microstructure and mechanical properties of 17-4PH steel[J]. Heat Treatment of Metals, 2020, 45(5): 56-62. [11]解文飞, 吴文云, 汪东红, 等. 17-4PH不锈钢480 ℃时效组织的动态演变规律[J]. 金属热处理, 2020, 45(8): 22-27. Xie Wenfei, Wu Wenyun, Wang Donghong, et al. Microstructure dynamic evolution of 17-4PH stainless steel aged at 480 ℃[J]. Heat Treatment of Metals, 2020, 45(8): 22-27. [12]Wang Z, Hui L, Qin S, et al. Nano-precipitates evolution and their effects on mechanical properties of 17-4 precipitation-hardening stainless steel[J]. Acta Materialia, 2018, 156: 158-171. [13]康珍玮, 周根树, 刘立军, 等. 压缩机17-4PH不锈钢叶轮叶片的失效分析[J]. 金属热处理, 2021, 46(11): 254-257. Kang Zhenwei, Zhou Genshu, Liu Lijun, et al. Failure analysis of compressor impeller blade made of 17-4PH stainless steel[J]. Heat Treatment of Metals, 2021, 46(11): 254-257. [14]高艾瑞, 高 圆, 席生岐, 等. 不同温度时效后17-4PH不锈钢的高周腐蚀疲劳性能[J]. 金属热处理, 2021, 46(4): 188-191. Gao Airui, Gao Yuan, Xi Shengqi, et al. High cycle corrosion fatigue properties of 17-4PH stainless steel aged at different temperatures[J]. Heat Treatment of Metals, 2021, 46(4): 188-191. [15]刘 勇, 朱景川, 周 易, 等. 17-4PH钢连续加热奥氏体化的动力学[J]. 钢铁研究学报, 2015, 27(10): 63-66. Liu Yong, Zhu Jingchuan, Zhou Yi, et al. Austenitization dynamics of 17-4PH steel during continuous heating process[J]. Journal of Iron and Steel Research, 2015, 27(10): 63-66. [16]王剑星, 杨 钢, 张忠模, 等. 热处理工艺0Cr17Ni4Cu4Nb不锈钢组织和力学性能的影响[J]. 金属热处理, 2012, 37(11): 90-94. Wang Jianxing, Yang Gang, Zhang Zhongmo, et al. Effect of heat treatment process on microstructure and mechanical properties of 0Cr17Ni4Cu4Nb stainless steel[J]. Heat Treatment of Metals, 2012, 37(11): 90-94. [17]曲德毅, 侯远滨. 固溶冷却速度对17-4PH不锈钢组织和性能的影响[J]. 热处理技术与装备, 2013, 34(4): 28-30. [18]李 闯, 王学敏, 尚成嘉, 等. Fe-2.0Cu合金连续冷却过程中Cu的析出行为[J]. 金属热处理, 2009, 34(6): 33-37. Li Chuang, Wang Xuemin, Shang Chengjia, et al. Precipitation behavior of Cu in Fe-2.0Cu alloy during continuous cooling process[J]. Heat Treatment of Metals, 2009, 34(6): 33-37. [19]王建华, 王慧敏, 杨忠民, 等. 超低碳钢连续冷却过程中铜的析出行为[J]. 钢铁研究学报, 2010, 22(10): 39-43. Wang Jianhua, Wang Huimin, Yang Zhongmin, et al. Precipitation of Cu in ultra low carbon steel during continuous cooling process[J]. Journal of Iron and Steel Research, 2010, 22(10): 39-43. [20]李兴东, 王丽艳, 李宇峰. 05Cr17Ni4Cu4Nb钢时效处理过程及变形过程对逆变奥氏体体积分数的影响[J]. 动力工程学报, 2017, 37(1): 79-84. Li Xingdong, Wang Liyan, Li Yufeng. Changes of reverted austenite content in aging and deformation process of steel 05Cr17Ni4Cu4Nb[J]. Journal of Chinese Society of Power Engineering, 2017, 37(1): 79-84. [21]Rowolt C, Milkereit B, Springer A, et al. Dissolution and precipitation of copper-rich phases during heating and cooling of precipitation-hardening steel X5CrNiCuNb16-4(17-4PH)[J]. Journal of Materials Science, 2020, 55(27): 13244-13257. [22]徐祖耀. 马氏体相变与马氏体[M]. 北京: 科学出版社, 1999. Xu Zuyao. Martensitic Transformation and Martensite[M]. Beijing: Science Press, 1999. [23]Morgan E R, Ko T. Thermal stabilization of austenite in iron-carbon-nickel alloys[J]. Acta Metallurgica, 1953, 1(1): 36-48. [24]康沫狂, 朱 明. 淬火合金钢中的奥氏体稳定化[J]. 金属学报, 2005, 41(7): 673-679. Kang Mokuang, Zhu Ming. Stabilization of austenite in quenched alloy steels[J]. 2005, 41(7): 673-679. [25]Maisuradze M V, Ryzhkov M A. Thermal stabilization of austenite during quenching and partitioning of austenite for automotive steels[J]. Metallurgist, 2018, 62(3): 337-347. [26]关庆丰, 邱冬华, 李 艳, 等. 17-4PH不锈钢时效析出相的形成过程[J]. 吉林大学学报(工学版), 2011, 41(3): 654-658. Guan Qingfeng, Qiu Donghua, Li Yan, et al. The formation behavior of aging precipitates on 17-4PH stainless steel[J]. Journal of University (Engineering and Technology Edition), 2011, 41(3): 654-658. [27]Peng X Y, Zhou X L, Hua X Z, et al. Effect of aging on hardening behavior of 15-5PH stainless steel[J]. Journal of Iron and Steel Research (International), 2015, 22(7): 607-614. [28]Bajguirani H. The effect of ageing upon the microstructure and mechanical properties of type 15-5PH stainless steel[J]. Materials Science and Engineering A, 2002, 338(1/2): 142-159. [29]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. Yong Qilong. Second Phases in Steels[M]. Beijing: Metallurgical Industry Press, 2006. [30]Hin C, Bréchet Y, Maugis P, et al. Kinetics of heterogeneous dislocation precipitation of NbC in alpha-iron[J]. Acta Materialia, 2008, 56(19): 5535-5543. [31]Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metallurgica, 1959, 7(1): 59-60. [32]陈睿恺, 顾剑锋, 潘健生. 低周转子钢30Cr2Ni4MoV珠光体等温转变动力学[J]. 金属热处理, 2012, 37(5): 1-5. Chen Ruikai, Gu Jianfeng, Pan Jiansheng. Kinetics of isothermal pearlite transformation of 30Cr2Ni4MoV steel for low pressure rotors[J]. Heat Treatment of Metals, 2012, 37(5): 1-5. |