[1]李 志, 赵振业. AerMet100钢的研究与发展[J]. 航空材料学报, 2006(3): 265-270. Li Zhi, Zhao Zhenye. Research and development of AerMet100 steel[J]. Journal of Aeronautical Materials, 2006(3): 265-270. [2]乔慧娟, 李付国, 冀国良, 等. Aermet100钢高温变形行为及热加工图研究[J]. 稀有金属材料与工程, 2014, 43(4): 926-931. Qiao Huijuan, Li Fuguo, Ji Guoliang, et al. Deformation behavior at elevated temperature and processing map of Aermet100 steel[J]. Rare Metal Materials and Engineering, 2014, 43(4): 926-931. [3]Shakib M, Perkins K M, Bray S E, et al. Development of a high temperature flow stress model for AerMet100 covering several orders of magnitude of strain rate[J]. Materials Science and Engineering A, 2016, 657: 26-32. [4]石 琳. 下一代飞机用超高强度钢[J]. 航空工程与维修, 2000(3): 39-40. Shi Lin. Ultra-high tensile steel for next generation aircraft[J]. Aviation Maintenance and Engineering, 2000(3): 39-40. [5]Warke V S, Sisson R D, Makhlouf M M. FEA model for predicting the response of powder metallurgy steel components to heat treatment[J]. Materials Science and Engineering, 2009, 518(1-2): 7-15. [6]Mackerle J. Finite element analysis and simulation of quenching and other heat treatment processes: A bibliography (1976-2001)[J]. Computational Materials Science, 2003, 27(3): 313-332. [7]Cho J R, Lee B Y, Moon Y H, et al. Investigation of residual stress and post weld heat treatment of multi-pass welds by finite element method and experiments[J]. Journal of Materials Processing Technology, 2004, 155-156: 1690-1695. [8]汪向荣, 闫牧夫. AerMet100钢热压缩过程流变应力模型[J]. 机械工程材料, 2007(3): 73-75. Wang Xiangrong, Yan Mufu. Flow stress model of steel AerMet100 during hot compression deformation[J]. Materials for Mechanical Engineering, 2007(3): 73-75. |