[1]Reed R C. The Superalloys: Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2006. [2]周 舸, 张善庆, 莫卫红, 等. 真空热处理对DD6单晶合金表面氧化的影响[J]. 金属热处理, 2016, 41(6): 155-158. Zhou Ge, Zhang Shanqing, Mo Weihong, et al. Effect of vacuum heat treatment on surface oxidization of single crystal superalloy DD6[J]. Heat Treatment of Metals, 2016, 41(6): 155-158. [3]Pollock T M, Tin S. Nickel based superalloys for advanced turbine engines: Chemistry, microstructure and properties[J]. Journal of Propulsion & Power, 2006, 22(2): 361-374. [4]Schulz U, Leyens C, Fritscher K, et al. Some recent trends in research and technology of advanced thermal barrier coatings[J]. Aerospace Science and Technology, 2003, 7(1): 73-80. [5]Maricocchi A, Bartz A, Wortman D. PVD TBC experience on GE aircraft engines[J]. Journal of Thermal Spray Technology, 1997, 6(2): 193-198. [6]Rigney D V, Viguie R, Wortman D J, et al. PVD thermal barrier coating applications and progress development for aircraft engines[J]. Journal of Thermal Spray Technology, 1997, 6(2): 167-175. [7]Bose S, Demasi-Marcin J. Thermal barrier coating experience in gas turbine engines at Pratt & Whitney[J]. Journal of Thermal Spray Technology, 1997, 6(1): 99-104. [8]Vorkötter C, Macka D E, Guillona O, et al. Superior cyclic life of thermal barrier coatings with advanced bond coats on single-crystal superalloys[J]. Surface & Coatings Technology, 2019, 361: 150-158. [9]郭蕙敏, 李 博, 张立群, 等. 真实TGO界面形貌对热障涂层界面应力的影响[J]. 金属热处理, 2021, 46(11): 232-235. Guo Huimin, Li Bo, Zhang Liqun, et al. Effect of real TGO interface topography on interface stress of thermal barrier coatings[J]. Heat Treatment of Metals, 2021, 46(11): 232-235. [10]钟颖虹, 陆 辛, 计亚平, 等. 等离子喷涂梯度热障涂层的抗热震性能[J]. 金属热处理, 2015, 40(7): 176-179. Zhong Yinghong, Lu Xin, Ji Yaping, et al. Thermal shock resistance of gradient thermal barrier coating prepared by atmospheric plasma spraying[J]. Heat Treatment of Metals, 2015, 40(7): 176-179. [11]Kumar V, Kandasubramanian B. Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications[J]. Particuology, 2016(4): 1-28. [12]Schulz U, Fritscher K, Ebach-Stahl A. Cyclic behavior of EB-PVD thermal barrier coating systems with modified bond coats[J]. Surface & Coatings Technology, 2008, 203(5): 449-455. [13]Subramanian R, Mori Y, Yamagishi S, et al. Thermo-mechanical fatigue failure of thermal barrier coated superalloy specimen[J]. Metallurgical and Materials Transactions A, 2015, 46(9): 3999-4012. [14]Kitazawa R, Tanaka M, Kagawa Y, et al. Damage evolution of TBC system under in-phase thermo-mechanical tests[J]. Materials Science and Engineering B, 2010, 173(1-3): 130-134. [15]Sjostrom S, Brodin H. Influence of TBC end geometry on the TMF life of an APS TBC[J]. Procedia Engineering, 2010, 2(1): 1363-1371. [16]Peichl A, Beck T, Vohringer O. Behavior of an EB-PVD thermal barrier coating system under thermal-mechanical fatigue loading[J]. Surface and Coatings Technology, 2003, 162: 113-118. [17]Bartsch M, Baufeld B, Dalkilic S, et al. Fatigue cracks in a thermal barrier coating system on a superalloy in multiaxial thermomechanical testing[J]. International Journal of Fatigue, 2008, 30(2): 211-218. [18]Chen Z B, Wang Z G, Zhu S J. Thermomechanical fatigue behavior of an air plasma sprayed thermal barrier coating system[J]. Materials Science and Engineering A, 2011, 528(29/30): 8396-8401. [19]Zhou Z J, Li C P, Chen G F, et al. Thermomechanical and thermal gradient mechanical fatigue lifetime for thermal barrier coating systems[J]. Materials Science Forum, 2017, 898: 1524-1531. [20]Huang F, Nie M, Lin J D, et al. Effect of strain ranges and phase angles on the thermomechanical fatigue properties of thermal barrier coating system[J]. Rare Metal Materials and Engineering, 2017, 46(12): 3693-3698. [21]张泽海, 于金江, 石 峰, 等. DD499单晶合金拉伸性能薄壁效应[J]. 铸造, 2014, 63(8): 781-787. Zhang Zehai, Yu Jinjiang, Shi Feng, et al. Influence of thin wall on the tensile properties of DD499 single crystal superalloy[J]. Foundry, 2014, 63(8): 781-787. [22]Liu J L, Yu J J, Jin T, et al. Influence of temperature on tensile behavior and deformation mechanism of re-containing single crystal superalloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(7): 1518-1523. [23]Evans W J, Lancaster R, Steele A, et al. Plain and notched fatigue in nickel single crystal alloys[J]. International Journal of Fatigue, 2009, 31(11): 1709-1718. [24]Okazaki M, Sakaguchi M. Thermo-mechanical fatigue failure of a single crystal Ni-based superalloy[J]. International Journal of Fatigue, 2008, 30(2): 318-323. |