[1]谌 康, 蔡文河, 杜双明, 等. 喷丸对马氏体耐热钢高温蒸汽氧化行为的影响[J]. 金属热处理, 2021, 46(2): 66-73. Chen Kang, Cai Wenhe, Du Shuangming, et al. Effect of shot peening on high-temperature steam oxidation behavior of martensitic heat-resistant steel[J]. Heat Treatment of Metals, 2021, 46(2): 66-73. [2]黄 舒. 激光喷丸强化铝合金的疲劳裂纹扩展特性及延寿机理研究[D]. 镇江: 江苏大学, 2012. [3]张 雪. 疲劳短裂纹在残余应力场中的闭合和扩展[J]. 机械强度, 2000, 22(2): 137-138, 123. Zhang Xue. Fatigue short through-thickness crack closure and growth in the residual stress field[J]. Journal of Mechanical Strength, 2000, 22(2): 137-138, 123. [4]王学德, 聂祥樊, 臧顺来, 等. 激光冲击强化“残余应力洞”的形成机制[J]. 强激光与粒子束, 2014, 26(11): 306-310. Wang Xuede, Nie Xiangfan, Zang Shunlai, et al. Formation mechanism of “residual stress hole” induced by laser shock peening[J]. High Power Laser and Particle Beams, 2014, 26(11): 306-310. [5]Wang G Q, Zhu X P, Lei M K, et al. Inverse surface integrity problem in ultrasonic impact-treated AISI 304 stainless steel components[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(5): 2033-2040. [6]Dounde A A, Seemikeri C Y, Tanpure P R. Study of shot peening process and their effect on surface properties: A review[J]. International Journal of Engineering, Business and Enterprise Applications, 2015, 2(12): 104-107. [7]李玉晓, 史大琳, 曹兴忠, 等. 奥氏体316不锈钢微观缺陷的热演化[J]. 郑州大学学报(理学版), 2020, 52(2): 89-94, 101. Li Yuxiao, Shi Dalin, Cao Xingzhong, et al. Thermal evolution of micro-defects in type-316 austenitic stainless steel[J]. Journal of Zhengzhou University (Natural Science Edition), 2020, 52(2): 89-94, 101. [8]朱鹏飞, 严宏志, 陈 志, 等. 齿轮齿面喷丸强化研究现状与展望[J]. 表面技术, 2020, 49(4): 113-131, 140. Zhu Pengfei, Yan Hongzhi, Chen Zhi, et al. Research status and prospect of shot peening of gear tooth flanks[J]. Surface Technology, 2020, 49(4): 113-131, 140. [9]Wen A L, Wang S W, Ren R M, et al. Effect of combined shot peening process for surface nanocrystallization method on fatigue strength of TC4[J]. Advanced Materials Research, 2010, 97(101): 2217-2217. [10]董 星, 王瑞红, 段 雄. 水射流喷丸强化的试验研究[J]. 煤炭学报, 2014, 39(3): 568-573. Dong Xing, Wang Ruihong, Duan Xiong. Test research of water jet peening strengthening[J]. Journal of China Coal Society, 2014, 39(3): 568-573. [11]辛立正. 喷丸强化工艺的喷丸强度测试与分析[J]. 工具技术, 2018, 52(5): 87-90. Xin Lizheng. Shot peening process design intensity[J]. Tool Engineering, 2018, 52(5): 87-90. [12]Holmberg J, Wretland A, Berglund J, et al. Surface integrity after post processing of EDM processed Inconel 718 shaft[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 2325-2337. [13]Ye Q, Nguyen V, Melkote S, et al. Wear of WC inserts textured by shot peening and electrical discharge machining[J]. Wear, 2020, 452: 203-207. [14]鲜 鹏, 李 军. 喷丸技术的发展与研究[J]. 金属世界, 2020(1): 32-36. Xian Peng, Li Jun. Research and application of shot peen technology[J]. Metal World, 2020(1): 32-36. [15]Faith R. ASM Handbook: Volume 5: Surface Engineering[M]. OH: ASM International, 1994. [16]Davim J P. Surface Integrity in Machining[M]. London: Springer, 2010. [17]Hisamatsu S, Kanazawa T. Improvement of carburized gear strength by shot peening[J]. Journal of the Society of Automotive Engineers of Japan, 1987, 41(7): 722-728. [18]Farajian M, Hardenacke V, Klaus M, et al. Numericalstudies of shot peening of high strength steels and the related experimental investigations by means of hole drilling, X-ray and synchrotron diffraction analysis[C]// International Conference on Shot Peening ICSP12. 2014. [19]Higounenc O. Correlation of shot peening parameters to surface characteristic[C]// International Conference on Shot Peening ICSP12. [20]Schiffner K, Helling C D G. Simulation of residual stresses by shot peening[J]. Computers and Structures, 1999, 72(1-3): 329-340. [21]Champaigne J. Shot peening process variables[J]. Shot Peener, 1993, 7(3): 16-19. [22]周慧敏. 30CrMnSiNi2A高强钢热变形行为研究[D]. 重庆: 重庆大学, 2019. [23]王仁智. 金属材料的喷丸强化原理及其强化机理综述[J]. 中国表面工程, 2012, 25(6): 1-9. Wang Renzhi. Overview on the shot peening principle and its strengthening mechanisms for metallic materials[J]. China Surface Engineering, 2012, 25(6): 1-9. [24]Sipos K, Remy L, Pineau A. Influence of austenite predeformation on mechanical properties and strain-induced martensitic transformations of a high manganese steel[J]. Metallurgical and Materials Transactions A, 1976, 7(5): 857-864. [25]Hou C K. Effect of rolling strain on the loss separation and permeability of lamination steels[J]. IEEE Transactions on Magnetics, 2002, 30(2): 212-216. [26]Hug E, Hubert O, Clavel M. Some aspects of the magnetomechanical coupling in the strengthening of nonoriented and grain-oriented 3% SiFe alloys[J]. IEEE Transactions on Magnetics, 2017, 33(1): 763-771. [27]Hwang D G, Kim H C. The influence of plastic deformation on Barkhausen effects and magnetic properties in mild steel[J]. Journal of Physics D Applied Physics, 2000, 21(12): 1807-1813. [28]Landgraf F J G, Emura M, Ito K, et al. Effect of plastic deformation on the magnetic properties of non-oriented electrical steels[J]. Journal of Magnetism and Magnetic Materials, 2000, 215-216: 94-96. [29]Li K, Xie J, Chen D, et al. Observation of magnetic properties and microstructural evolution of 301 stainless steel upon ultrasonic shot peening[J]. Materialia, 2020, 10: 100651. [30]王仁智, 汝继来, 李向斌, 等. 疲劳裂纹萌生的微细观过程与内部疲劳极限理论[J]. 金属热处理学报, 1995(4): 26-34. Wang Renzhi, Ru Jilai, Li Xiangbin, et al. A micro-meso-process theory of fatigue crack initiation and theory internal fatigue limit[J]. Journal of Metal Heat Treatment, 1995(4): 26-34. [31]王 超, 张 海, 李冬飞, 等. 微粒子喷丸对靶材残余应力场的影响[J]. 金属热处理, 2020, 45(5): 192-199. Wang Chao, Zhang Hai, Li Dongfei, et al. Effect of microparticle shot peening on residual stress field of target[J]. Heat Treatment of Metals, 2020, 45(5): 192-199. [32]王 成, 李开发, 胡兴远, 等. 喷丸强化残余应力对AISI 304不锈钢疲劳裂纹扩展行为的影响[J]. 表面技术, 2021, 50(9): 81-90, 151. Wang Cheng, Li Kaifa, Hu Xingyuan, et al. Effects ofshot peening-induced residual stresses on fatigue crack propagation behavior of AISI 304 stainless steel[J]. Surface Technology, 2021, 50(9): 81-90, 151. [33]Kim H J, Wallace J F. Effects of EDM and its mitigation by surface modification on thermal fatigue properties[J]. Surface Engineering, 1994, 10(1): 56-64 [34]Tang J, Yang X. Simulation investigation of thermal phase transformation and residual stress in single pulse EDM of Ti-6Al-4V[J]. Journal of Physics D Applied Physics, 2018, 51(13): 135-138. [35]Salvati E, Korsunsky A M. Micro-scale measurement & FEM modelling of residual stresses in AA6082-T6 Al alloy generated by wire EDM cutting[J]. Journal of Materials Processing Technology, 2020, 275: 116373. [36]Li Kejian, Xie Jing, Chen Dengming, et al. , Observation of magnetic properties and microstructural evolution of 301 stainless steel upon ultrasonic shot peening[J]. Materialia, 2020, 10: 100651. [37]吴少杰, 刘怀举, 张仁华, 等. 基于正交实验和数据驱动的喷丸表面完整性参数预测[J]. 表面技术, 2021, 50(4): 86-95. Wu Shaojie, Liu Huaiju, Zhang Renhua, et al. Prediction of surface integrity parameters of shot peening based on orthogonal experiment and data-driven[J]. Surface Technology, 2021, 50(4): 86-95. [38]王 超, 张 海, 李冬飞, 等. 靶材性能对微粒子喷丸残余应力场的影响[J]. 金属热处理, 2019, 44(12): 238-243. Wang Chao, Zhang Hai, Li Dongfei, et al. Effect of target properties on residual stress field of microshot peening[J]. Heat Treatment of Metals, 2019, 44(12): 238-243. [39]Guo F A, Trannoy N, Lu J. Analysis of thermal properties by scanning thermal microscopy in nanocrystallized iron surface induced by ultrasonic shot peening[J]. Materials Science and Engineering A, 2003, 369(4): 36-42. [40]Mordyuk B N, Prokopenko G I, Vasylyev M A, et al. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel[J]. Materials Science and Engineering A, 2006, 458(1-2): 253-261. [41]Marteau J, Bigerelle M, Mazeran P E, et al. Relation between roughness and processing conditions of AISI 316L stainless steel treated by ultrasonic shot peening[J]. Tribology International, 2015, 82: 319-329. [42]Li K, Shin K, Cao P. Strain-induced phase transformation and nanocrystallization of 301 metastable stainless steel upon ultrasonic shot peening[J]. Metallurgical and Materials Transactions A, 2018, 49: 4435-4440. |