[1]应雨轩, 林晓青, 吴昂键, 等. 生活垃圾智慧焚烧的研究现状及展望[J]. 化工学报, 2021, 72(2): 886-900. Ying Yuxuan, Lin Xiaoqing, Wu Angjian, et al. Review and outlook on municipal solid waste smart incineration [J]. CIESC Journal, 2021, 72(2): 886-900. [2]宋志伟, 吕一波, 梁 洋, 等. 国内外城市生活垃圾焚烧技术的发展现状[J]. 环境卫生工程, 2007, 15(1): 21-24. Song Zhiwei, Lu Yibo, Liang Yang, et al. Present situation of the development of municipal domestic waste incineration technology [J]. Environmental Sanitation Engineering, 2007, 15(1): 21-24. [3]刘功起, 吴玉锋, 杨天伟, 等. 垃圾焚烧炉关键服役材料发展现状及研究趋势[J]. 材料导报, 2021, 35(17): 17125-17135. Liu Gongqi, Wu Yufeng, Yang Tianwei, et al. The development status and research trend of key service materials for waste incinerators [J]. Materials Reports, 2021, 35(17): 17125-17135. [4]武 彬, 孙宏飞, 于惠博, 等. 高温热电偶保护套管材料的研究[J]. 中国仪器仪表, 2006(8): 32-35. Wu Bin, Sun Hongfei, Yu Huibo, et al. Research of thermocouple cannula material used in high temperature [J]. China Instrumentation, 2006(8): 32-35. [5]王灿明, 孙宏飞, 万殿茂, 等. 循环流化床锅炉用特殊热电偶保护套管的选材与发展[J]. 中国仪器仪表, 2003(2): 1-4. Wang Canming, Sun Hongfei, Wan Dianmao, et al. Material selection and development of special thermocouple cannula used on circulation fluidized bed boiler [J]. China Instrumentation, 2003(2): 1-4. [6]董 方, 郄俊懋, 辛瑞峰. 304不锈钢高温力学性能研究[J]. 热加工工艺, 2014, 43(16): 96-101. Dong Fang, Qie Junmao, Xin Ruifeng. Study on high temperature mechanical properties of 304 stainless steel [J]. Hot Working Technology, 2014, 43(16): 96-101. [7]祝立群, 贡学钢, 常广东. 热电偶套管开裂失效分析[J]. 炼油与化工, 2011, 22(5): 60-61. Zhu Liqun, Gong Xuegang, Chang Guangdong. Failure analysis on cracking of thermowell [J]. Refining and Chemical Industry, 2011, 22(5): 60-61. [8]何家胜, 崔好选, 朱小明. 热电偶套管断裂失效分析研究[J]. 装备制造技术, 2007(1): 14-16. He Jiasheng, Cui Haoxuan, Zhu Xiaoming. Failure analysis on the cracking of thermocouple sleeve pipe [J]. Equipment Manufacturing Technology, 2007(1): 14-16. [9]陈立奇, 何如俊, 朱文明. 离子渗氮技术简介[J]. 热处理技术与装备, 2011, 32(3): 12-14. Chen Liqi, He Rujun, Zhu Wenming. Brief introduction of plasma nitriding [J]. Heat Treatment Technology and Equipment, 2011, 32(3): 12-14. [10]缪跃琼, 林 晨, 高玉新, 等. 304不锈钢低温离子渗氮及氮碳共渗处理[J]. 表面技术, 2015, 44(8): 61-64. MiaoYueqiong, Lin Chen, Gao Yuxin, et al. Low-temperature plasma nitriding and plasma nitrocarburing of 304 stainless steel [J]. Surface Technology, 2015, 44(8): 61-64. [11]覃旭娟, 卢俊强, 郭相龙, 等. 离子渗氮对AISI304L不锈钢磨损性能的影响[J]. 金属热处理, 2016, 41(1): 161-165. Qin Xujuan, Lu Junqiang, Guo Xianglong, et al. Effect of plasma nitriding on wear property of AISI 304L stainless steel [J]. Heat Treatment of Metals, 2016, 41(1): 161-165. [12]Shukla S, Patil A P, Kawale A P, Effect of thermal ageing and deformation on microstructural evolution of 304 and 202 grade steel [J]. Materials Today: Proceedings, 2021, 38(5): 3238-3245. [13]Castro-Colin M, Durrer W, Lopez J A, et al. Surface modification by nitrogen plasma immersion ion implantation on austenitic AISI 304 stainless steel [J]. Journal of Iron and Steel Research International, 2016, 23(4): 380-384. [14]míd M, Kuběna I, Jambor M, et al. Effect of solution annealing on low cycle fatigue of 304L stainless steel [J]. Materials Science and Engineering A, 2021, 824(8): 141807. [15]Cai X C, Ding S J, Jin S B, et al. Superior high-temperature oxidation resistance of nanocrystalline 304 austenitic stainless steel containing a small amount of Si [J]. Scripta Materialia, 2021, 204: 114155. [16]Qin Xujuan, Guo Xianglong, Lu Junqiang, et al. Erosion-wear and intergranular corrosion resistance properties of AISI 304L austenitic stainless steel after low-temperature plasma nitriding [J]. Journal of Alloys and Compounds, 2017, 698(25): 1094-1101. |