[1]陈云霞. 汽车用热成形钢新材料与新工艺进展[J]. 新材料产业, 2020(5): 52-56. [2]路洪洲, 赵 岩, 冯 毅, 等. 微合金化热成形钢开发应用进展及展望[J]. 机械工程材料, 2020, 44(12): 1-10. Lu Hongzhou, Zhao Yan, Feng Yi, et al. Progress and prospect for development and application of microalloying press-hardening steel[J]. Materials for Mechanical Engineering, 2020, 44(12): 1-10. [3]刘 纲, 干 勇, 刘 崇, 等. 基于22MnB5钢的铌钒微合金化热成形钢的研发[J]. 金属热处理, 2021, 46(1): 109-113. Liu Gang, Gan Yong, Liu Cong, et al. Development of Nb-V microalloyed hot forming steel based on 22MnB5[J]. Heat Treatment of Metals, 2021, 46(1): 109-113. [4]曹广祥, 常悦彤, 程 效, 等. 1800 MPa级冷轧热成形钢的应用研究[J]. 汽车工艺与材料, 2020(12): 1-4. Cao Guangxiang, Chang Yuetong, Cheng Xiao, et al. Research on application of 1800 MPa cold rolled thermoformed steel[J]. Automobile Technology and Material, 2020(12): 1-4. [5]赵征志, 陈伟健, 高鹏飞, 等. 先进高强度汽车用钢研究进展及展望[J]. 钢铁研究学报, 2020, 32(12): 1059-1076. Zhao Zhengzhi, Chen Weijian, Gao Pengfei, et al. Progress and perspective of advanced high strength automative steel[J]. Journal of Iron and Steel Research, 2020, 32(12): 1059-1076. [6]Ping H, Liang Y, Bin H. Hot Stamping Advanced Manufacturing Technology of Lightweight Car Body[M]. Singapore: Springer, 2017. [7]陈亚军, 邝 霜, 赵征志. 先进高强度汽车用钢氢致延迟断裂研究进展[J]. 钢铁研究学报, 2020, 32(4): 265-272. Chen Yajun, Kuang Shuang, Zhao Zhengzhi. Study status of hydrogen induced fracture of advance strength automotive steel[J]. Journal of Iron and Steel Research, 2020, 32(4): 265-272. [8]梁 文, 冯 彬, 朱国明, 等. 1800 MPa热成形钢与CR340LA低合金高强钢激光焊接性能[J]. 工程科学学报, 2020, 42(6): 755-762. Liang Wen, Feng Bin, Zhu Guoming, et al. Laser welding properties of 1800 MPa press hardening steel and low-alloy high-strength steel CR340LA[J]. Chinese Journal of Engineering, 2020, 42(6): 755-762. [9]易红亮, 常智渊, 才贺龙, 等. 热冲压成形钢的强度与塑性及断裂应变[J]. 金属学报, 2020, 56(4): 429-443. Yi Hongliang, Chang Zhiyuan, Cai Helong, et al. Strength, ductility and fracture strain of press-hardening steels[J]. Acta Metallurgica Sinica, 2020, 56(4): 429-443. [10]Çavuşoğlu O, Çavuşoğlu O, Yilmazoğlu A G, et al. Microstructural features and mechanical properties of 22MnB5 hot stamping steel in different heat treatment conditions[J]. Journal of Materials Research and Technology, 2020, 9(5): 10901-10908. [11]徐德超, 赵海峰, 李学涛, 等. 回火温度对淬火22MnB5热成形钢组织及性能的影响[J]. 材料热处理学报, 2018, 39(8): 88-94. Xu Dechao, Zhao Haifeng, Li Xuetao, et al. Effect of tempering temperature on microstructure and mechanical properties of 22MnB5 hot stamping steel after quenching[J]. Transactions of Materials and Heat Treatment, 2018, 39(8): 88-94. [12]程俊业, 赵爱民, 陈银莉, 等. 回火温度对淬火后30MnB5热成形钢组织与性能影响[J]. 北京科技大学学报, 2013, 35(9): 1150-1157. Cheng Junye, Zhao Aimin, Chen Yinli, et al. Effect of tempering temperature on the microstructure and mechanical properties of 30MnB5 hot stamping steel after quenching[J]. Journal of University of Science and Technology Beijing, 2013, 35(9): 1150-1157. [13]程俊业, 赵爱民, 陈银莉, 等. 不同温度回火后30MnB5热成形钢的EBSD研究[J]. 金属学报, 2013, 49(2): 137-145. Cheng Junye, Zhao Aimin, Chen Yinli, et al. EBSD studies of 30MnB5 hot stamping steel tempered at different temperatures[J]. Acta Metallurgica Sinica, 2013, 49(2): 137-145. [14]Wu H, Ju B, Tang D, et al. Effect of Nb addition on the microstructure and mechanical properties of an 1800 MPa ultrahigh strength steel[J]. Materials Science and Engineering A, 2015, 622: 61-66. [15]祁 聪, 王新东, 丁文红, 等. 温变形对700L高强钢碳化物析出行为及残余应力的影响[J]. 材料热处理学报, 2021, 42(4): 117-124. Qi Cong, Wang Xindong, Ding Wenhong, et al. Effect of warm deformation on carbide precipitation behavior and residual stress of 700L high strength steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(4): 117-124. [16]姜 超, 单忠德, 庄百亮, 等. 热冲压成形22MnB5钢板的组织和性能[J]. 材料热处理学报, 2012, 33(3): 78-81. Jiang Chao, Shan Zhongde, Zhuang Bailiang, et al. Microstructure and properties of hot stamping 22MnB5 steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(3): 78-81. [17]王立军, 蔡庆伍, 武会宾, 等. 回火温度对1500 MPa级直接淬火钢组织与性能的影响[J]. 北京科技大学学报, 2010, 32(9): 1150-1156, 1162. Wang Lijun, Cai Qingwu, Wu Huibin, et al. Effect of tempering temperature on the microstructure and mechanical properties of 1500 MPa grade steel directly quenched[J]. Journal of University of Science and Technology Beijing, 2010, 32(9): 1150-1156, 1162. [18]Roberts M J. Effect of transformation substructure on the strength and toughness of Fe-Mn alloys[J]. Metallurgical Transactions B, 1970, 1(12): 3287-3294. [19]徐祖耀. 条状马氏体形态对钢力学性质的影响[J]. 热处理, 2009, 24(3): 1-6. Xu Zuyao. Effect of lath martensite morphology on the mechanical properties of steel[J]. Heat Treatment, 2009, 24(3): 1-6. [20]于 浩, 张道达, 肖荣亭, 等. 回火温度对Q960钢小角度晶界的影响[J]. 北京科技大学学报, 2011, 33(8): 952-957. Yu Hao, Zhang Daoda, Xiao Rongting, et al. Effect of tempering temperature on low angle grain boundaries in Q960 steel[J]. Journal of University of Science and Technology Beijing, 2011, 33(8): 952-957. [21]Chen W, Gao P, Wang S, et al. Strengthening mechanisms of Nb and V microalloying high strength hot-stamped steel[J]. Materials Science and Engineering A, 2020, 797: 140115. [22]Yu Y S, Wang Z Q, Wu B B, et al. New insight into the hardenability of high strength low alloy steel from the perspective of crystallography[J]. Materials Letters, 2021, 292: 129624. [23]邓灿明. 低碳马氏体钢强韧性晶粒控制单元的研究[D]. 昆明: 昆明理工大学, 2013. [24]王 蒲, 石增敏, 张允题, 等. 22SiMn2TiB钢淬火与回火过程中的组织演变[J]. 钢铁研究学报, 2016, 28(2): 45-50. Wang Pu, Shi Zengmin, Zhang Yunti, et al. Evolution of microstructure of 22SiMn2TiB steel during quenching-tempering process[J]. Journal of Iron and Steel Research, 2016, 28(2): 45-50. |