[1]Sakai Y, Schneider Muntau H J. Ultra-high strength, high conductivity Cu-Ag alloy wires[J]. Acta Materialia, 1997, 45(3): 1017-1023. [2]Sakai Y, Inoue K, Maeda H. High-strength and high-conductivity Cu-Ag alloy sheets: New promising conductor for high-fieId Bitter coils[J]. IEEE Transactions on Magnetics, 1994, 30(4): 2114-2117. [3]孔令宝, 周延军, 宋克兴, 等. 不同温度退火后Cu-Ag合金的组织和性能[J]. 机械工程材料, 2020, 44(12): 29-32. Kong Lingbao, Zhou Yanjun, Song Kexing, et al. Microstructure and properties of Cu-Ag alloy after annealing at different temperatures[J]. Materials for Mechanical Engineering, 2020, 44(12): 29-32. [4]Liu J B, Meng L, Zeng Y W. Microstructure evolution and properties of Cu-Ag microcomposites with different Ag content[J]. Materials Science & Engineering A, 2006, 435/436: 237-244. [5]Zhao H, Fu H, Xie M, et al. Effect of Ag content and drawing strain on microstructure and properties of directionally solidified Cu-Ag alloy[J]. Vacuum, 2018, 154: 190-199. [6]丁 轩, 甘玉荣, 张春菊, 等. 中间退火工艺对6016铝合金组织与性能的影响[J]. 金属热处理, 2021, 46(8): 174-179. Ding Xuan, Gan Yurong, Zhang Chunju, et al. Effect of intermediate annealing on microstructure and properties of 6016 aluminum alloy[J]. Heat Treatment of Metals, 2021, 46(8): 174-179. [7]吴 静, 董欣欣, 刘丽萍. 退火工艺对TRIP980冷轧钢板显微组织和力学性能的影响[J]. 金属热处理, 2020, 45(12): 102-105. Wu Jing, Dong Xinxin, Liu Liping. Effect of annealing process on microstructure and mechanical properties of cold rolled TRIP980 steel plate[J]. Heat Treatment of Metals, 2020, 45(12): 102-105. [8]何钦生, 邹兴政, 李 方, 等. Cu-Ag合金原位纤维复合材料研究现状[J]. 材料导报, 2018, 32(15): 2683-2699. He Qinsheng, Zou Xingzheng, Li Fang, et al. Research status of Cu-Ag alloy in-situ filamentary composites[J]. Materials Review, 2018, 32(15): 2683-2699. [9]Xie M, Huang W, Chen H, et al. Microstructural evolution and strengthening mechanisms in cold-rolled Cu-Ag alloys[J]. Journal of Alloys and Compounds, 2020, 851: 156893. [10]Liu J B, Zhang L, Meng L. Relationships between mechanical strength and electrical conductivity for Cu-Ag filamentary microcomposites[J]. Applied Physics A, 2007, 86(4): 529-532. [11]张朝民, 宋克兴, 程 楚, 等. 冷拉拔导致的大塑性变形对定向凝固Cu-4mass%Ag合金组织和性能的影响[J]. 材料热处理学报, 2020, 41(12): 49-56. Zhang Chaomin, Song Kexing, Cheng Chu, et al. Effect of large plastic deformation caused by cold-drawing on structure and properties of directional solidification Cu-4mass%Ag alloy[J]. Transactions of Materials and Heat Treatment, 2020, 41(12): 49-56. [12]Kong L B, Zhou Y J, Song K X, et al. Effect of aging on properties and nanoscale precipitates of Cu-Ag-Cr alloy[J]. Nanotechnology Reviews, 2020, 9(1): 70-80. [13]Zhu X F, Xiao Z, An J H, et al. Microstructure and properties of Cu-Ag alloy prepared by continuously directional solidification[J]. Journal of Alloys and Compounds, 2021, 883(12): 160769. [14]Wang W F, Wu Y C, Zong Y, et al. Effect of adding rare earth on the properties of Cu-Ag alloys treated by mechanical alloying[J]. Rare Metal Materials and Engineering, 2007, 36: 71-73. [15]Zhang L, Meng L. Effects of drawing strain on formation of filamentary structure and conductivity for Cu-12%Ag alloy[J]. Acta Metallurgica Sinica, 2005, 41(3): 255-259. [16]Ding C G, Xu J, Shan D B, et al. Sustainable fabrication of Cu/Nb composites with continuous laminated structure to achieve ultrahigh strength and excellent electrical conductivity[J]. Composites Part B: Engineering, 2021, 211: 108662. |