[1]Xie X S, Dong J X, Zhang M C, et al. High temperature structure stability study on Nb containing nickel base superalloys[J]. Materials Science Forum, 2007, 62: 1281-1288. [2]Azadian S, Wei L Y, Warren R. Delta phase precipitation in Inconel 718[J]. Materials Characterization, 2004, 53(1): 7-16. [3]Prasad K, Sarkar R, Ghosal R, et al. Tensile deformation behavior of forged disc of IN718 superalloy at 650 ℃[J]. Materials & Design, 2010, 31(9): 4502-4507. [4]Neng-Yong Y E, Cheng M, Zhang S H, et al. Effect of δ phase on mechanical properties of GH4169 alloy at room temperature[J]. Journal of Iron and Steel Research, 2015, 22(8): 752-756. [5]Maleki E, Unal O. Roles of surface coverage increase and re-peening on properties of AISI 1045 carbon steel in conventional and severe shot peening processes[J]. Surfaces and Interfaces, 2018, 11: 82-90. [6]高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响[J]. 金属学报, 2016, 52(8): 915-922. Gao Yukui. Influence of different surface modification and strengthening treatments on surface integrity and fatigue properties of TC4 titanium alloy[J]. Acta Metallurgica Sinica, 2016, 52(8): 915-922. [7]宋颖刚, 高玉魁, 陆 峰, 等. GH4169合金喷丸强化层组织结构研究[J]. 金属热处理, 2010, 35(9): 94-97. Song Yinggang, Gao Yukui, Lu Feng, et al. Investigation of microstructure of GH4169 alloy surface layer after shot peening[J]. Heat Treatment of Metals, 2010, 35(9): 94-97. [8]Iswanto P T, Maliwemu E U K, Malau V, et al. Surface roughness, hardness, and fatigue-corrosion characteristic of AISI 316L by shot peening[J]. Metalurgija, 2020, 59(2): 183-186. [9]Unal O, Varol R. Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening[J]. Applied Surface Science, 2015, 351: 289-295. [10]Bagherifard S, Slawik S, Pauly C, et al. Nanoscale surface modification of AISI 316L stainless steel by severe shot peening[J]. Materials & Design, 2016, 102: 68-77. [11]Bagherifard S, Ghelichi R, Guagliano M. Numerical and experimental analysis of surface roughness generated by shot peening[J]. Applied Surface Science, 2012, 258(18): 6831-6840. [12]Bagherifard S, Guagliano M. Fatigue behavior of a low-alloy steel with nanostructured surface obtained by severe shot peening[J]. Engineering Fracture Mechanics, 2012, 81: 56-68. [13]王 欣, 胡仁高, 胡 博, 等. 喷丸强化对GH4169合金孔结构高温低周疲劳性能的影响[J]. 中国表面工程, 2015, 28(6): 7-12. Wang Xin, Hu Rengao, Hu Bo, et al. Effect of shot peening on high-temperature low-cycle fatigue property of GH4169 superalloy with hole structure[J]. China Surface Engineering, 2015, 28(6): 7-12. [14]Kumar S, Rao G S, Chattopadhyay K, et al. Effect of surface nanostructure on tensile behavior of superalloy IN718[J]. Materials & Design, 2014, 62(10): 76-82. [15]郭胜华, 郑海忠, 程世平, 等. 喷丸尺寸对GH4169表层湿喷丸组织与性能的影响[J]. 特种铸造及有色合金, 2018, 38(6): 674-677. Guo Shenghua, Zheng Haizhong, Cheng Shiping, et al. Effects of projectile size on microstructure and properties of GH4169 surface by wetshot peening[J]. Special Casting & Nonferrous Alloys, 2018, 38 (6): 674-677. [16]郭胜华, 郑海忠, 程世平, 等. 喷丸时间对GH4169合金表层组织及性能的影响[J]. 特种铸造及有色合金, 2018, 38(7): 809-812. Guo Shenghua, Zheng Haizhong, Cheng Shiping, et al. Effects of shot peening time on microstructure and properties of GH4169 alloy surface[J]. Special Casting & Nonferrous Alloys, 2018, 38(7): 809-812. [17]Mccormick N, Lord J. Digital image correlation[J]. Mater Today, 2010, 13(12): 52-54. [18]Limodin N, Bartali A E, Wang L, et al. Application of X-ray microtomography to study the influence of the casting microstructure upon the tensile behaviour of an AlSi alloy[J]. Nuclear Inst and Methods in Physics Research, 2014, 324: 57-62. [19]褚玉龙, 张长田, 潘雪纯, 等. 航空GH2036合金硬度热处理优化及疲劳性能DIC分析[J]. 中国测试, 2020, 46(2): 148-154. Chu Yulong, Zhang Changtian, Pan Xuechun, et al. Hardness optimization and DIC-based fatigue performance analysis of aeronautical alloy GH2036 after heat treatment[J]. China Measurement & Test, 2020, 46(2): 148-154. [20]Yin Y J, Wei H E, Xie H M, et al. High temperature fatigue crack propagation study of superalloy GH4169 by single-lens 3D digital image correlation[J]. Science China (Technological Sciences), 2020, 63(4): 693-704. [21]Yin Y J, Wei H E, Xie H M. In situ SEM-DIC technique and its application to characterize the high-temperature fatigue crack closure effect[J]. Science China, 2020, 63(2): 265-276. [22]司刚强, 李 伟, 徐海丰, 等. 基于DIC和声发射的TC4合金疲劳损伤状态监测方法[J]. 东北石油大学学报, 2020, 44(3): 119-126. Si Gangqiang, Li Wei, Xu Haifeng, et al. Monitor of TC4 alloy fatigue damage based on DIC and acoustic emission technologies[J]. Journal of Northeast Petroleum University, 2020, 44(3): 119-126. [23]Peyre P, Fabbro P R, Merrien P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behavior[J]. Materials Science & Engineering A, 1996, 210(1): 102-113. [24]Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14501-14505. [25]周新远, 汪 勇, 宋占永, 等. 喷丸强化对7A52铝合金组织性能影响[J]. 功能材料, 2013, 44(S2): 355-358. Zhou Xinyuan, Wang Yong, Song Zhanyong, et al. Effect of shot peening strengthening on microstructure and properties of 7A52 aluminum alloy[J]. Journal of Functional Materials, 2013, 44(S2): 355-358. [26]Wen A L, Ren R M, Wang S, et al. Effect of surface nanocrystallization method on fatigue strength of TA2[J]. Materials Science Forum, 2009, 831: 545-549. [27]Akiniwa Y, Kimura H, Sasaki T. Effect of residual stresses on fatigue strength of severely surface deformed steels by shot peening[J]. Powder Diffraction, 2009, 24(S1): 37-40. [28]Liu Q, Li L, Shi Z M, et al. Mechanical properties and meso-damage evolution behavior of SUS 304 austenitic stainless steel[J]. Journal of Physics: Conference Series, 2021, 1777(1): 012015. [29]李 磊, 史志铭, 赵 晗. 退火温度对T2纯铜微结构演变及力学性能的影响[J]. 材料热处理学报, 2017, 38(12): 12-18. Li Lei, Shi Zhiming, Zhao Han. Effect of annealing temperature on microstructure evolution and mechanical properties of T2 copper[J]. Transactions of Materials and Heat Treatment, 2017, 38(12): 12-18. [30]魏亮鱼, 李 磊, 崔 晓, 等. 基于DIC方法的不同退火温度下Cu-Ni19合金损伤演变研究[J]. 工程力学, 2020, 37(4): 227-235. Wei Liangyu, Li Lei, Cui Xiao, et al. Study on damage evolution of Cu-Ni19 alloy at different annealing temperatures based on DIC method[J]. Engineering Mechanics, 2020, 37(4): 227-235. |