[1]胡伟勇, 王 峰, 黄 涛, 等. GCr15轴承钢的碳化物不均匀性缺陷[J]. 理化检验-物理分册, 2022, 58(11): 15-18, 22. Hu Weiyong, Wang Feng, Huang Tao, et al. Carbide inhomogeneity defects in GCr15 bearing steel[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2022, 58(11): 15-18, 22. [2]张朝磊, 朱禹承, 蒋 波. 高碳铬轴承钢组织双超细化的研究现状与发展趋势[J/OL]. 材料导报, 2023(6): 1-12. Zhang Chaolei, Zhu Yucheng, Jiang Bo. Research status and development trend of microstructure double ultra refinement of high carbon chromium bearing steel[J/OL]. Materials Reports, 2023(6): 1-12. [3]王 坤, 胡 锋, 周 雯, 等. 轴承钢研究现状及发展趋势[J]. 中国冶金, 2020, 30(9): 119-128. Wang Kun, Hu Feng, Zhou Wen, et al. Research status and development trend of bearing steel[J]. China Metallurgy, 2020, 30(9): 119-128. [4]曹文全, 俞 峰, 王存宇, 等. 高端装备用轴承钢冶金质量性能现状及未来发展方向[J]. 特殊钢, 2021, 42(1): 1-10. Cao Wenquan, Yu Feng, Wang Cunyu, et al. Status and future development of metallurgical quality and performance of bearing steels for high-end equipment[J]. Special Steel, 2021, 42(1): 1-10. [5]刘 飞, 刘静波, 盛青志. 国内轴承行业发展现状研究[J]. 现代经济信息, 2018(20): 317-318. [6]Huo X, Ning Y, Li L, et al. Research and control of network carbide in GCr15 bearing steel[J]. Materials Research Express, 2020, 7(1): 016559. [7]Erişir E, Ararat Ö, Bilir O G. Enhancing wear resistance of 100Cr6 bearing steels by new heat treatment method[J]. Metallurgical and Materials Transactions A, 2022, 53(3): 850-860. [8]Kang J H, Rivera-Díaz-del-Castillo P E J. Carbide dissolution in bearing steels[J]. Computational Materials Science, 2013, 67: 364-372. [9]张 川, 尹修刚, 周 攀, 等. GCr15轴承钢碳化物液析控制工艺优化[J]. 科学技术创新, 2022(14): 181-184. Zhang Chuan, Yin Xiugang, Zhou Pan, et al. Optimization of carbide precipitation control process for GCr15 bearing steel[J]. Scientific and Technological Innovation, 2022(14): 181-184. [10]尹 啸, 雷书伟, 徐 曦, 等. 改善高碳铬轴承钢碳化物均匀性研究[J]. 上海金属, 2022, 44(6): 78-85, 91. Yin Xiao, Lei Shuwei, Xu Xi, et al. Research on improvement in homogeneity of carbides in high carbon chromium bearing steel[J]. Shanghai Metals, 2022, 44(6): 78-85, 91. [11]Foster D, Paladugu M, Hughes J, et al. Formation of lower bainite in a high carbon steel-An in-situ synchrotron XRD study[J]. Journal of Materials Research and Technology, 2022, 18: 5380-5393. [12]Yang Z N, Ji Y L, Zhang F C, et al. Microstructural evolution and performance change of a carburized nanostructured bainitic bearing steel during rolling contact fatigue process[J]. Materials Science and Engineering A, 2018, 725: 98-107. [13]张福成, 杨志南, 雷建中, 等. 贝氏体钢在轴承中的应用进展[J]. 轴承, 2017(1): 54-64. Zhang Fucheng, Yang Zhinan, Lei Jianzhong, et al. Application Progress of Bainite Steel in Bearings[J]. Bearing, 2017(1): 54-64. [14]李 辉. 高碳铬轴承钢中碳化物演变及贝氏体相变行为[D]. 北京: 北京科技大学, 2015. Li Hui. Carbide evolution and bainite transformation behavior of high-carbon-chromium bearing steel[D]. Beijing: University of Science and Technology Beijing, 2015. [15]张增歧, 刘耀中, 樊志强, 等. 高碳铬轴承钢贝氏体等温淬火[J]. 轴承, 2001(8): 15-17, 46. Zhang Zengqi, Liu Yaozhong, Fan Zhiqiang, et al. Austempering of high carbon chromium bearing steel[J]. Bearing, 2001(8): 15-17, 46. [16]佘 丽. 贝氏体轴承钢滚动接触疲劳性能的研究[D]. 秦皇岛: 燕山大学, 2015. She Li. Study on contact fatigue property of bainitic bearing steels[D]. Qinhuangdao: Yanshan University, 2015. [17]张治红, 彭文飞, 李淑欣, 等. 新型贝氏体轴承钢热变形行为及动态再结晶研究[J]. 塑性工程学报, 2020, 27(7): 158-167. Zhang Zhihong, Peng Wenfei, Li Shuxin, et al. Hot deformation behavior and dynamic recrystallization of a new type of bainitic bearing steel [J]. Journal of Plasticity Engineering, 2020, 27(7): 158-167. [18]米振莉, 张小垒, 李志超, 等. 热处理工艺对高碳铬轴承钢组织和性能的影响[J]. 材料热处理学报, 2015, 36(7): 119-124. Mi Zhenli, Zhang Xiaolei, Li Zhichao, et al. Effect of heat treatment process on microstructure and properties of a high carbon chromium bearing steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(7): 119-124. |